Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Angew Chem Int Ed Engl ; 63(4): e202316662, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38059768

RESUMO

Aryl-maleimides undergo a novel [2+4]-photodimerization instead of the expected [2+2]-photodimerization under both direct irradiation with visible light and under sensitized energy transfer conditions. This new excited state reactivity in aryl-maleimides is deciphered through photochemical, photophysical, and spectroscopic studies. The stereochemistry of the photodimer depends on the type of non-bonding interactions prevalent during photodimerization which is in turn dictated by the substituents on the maleimide ring. More importantly, the stereochemistry of the photodimer formed is complementary to the product observed under thermal conditions.

2.
Photochem Photobiol ; 99(3): 901-905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825924

RESUMO

The study evaluates compatibility of stabilizers with dye doped liquid crystal (LC) scaffolds that are used in electronically dimmable materials. The photodegradation of the materials was investigated and suitable stabilizers were evaluated to slow the degradation process. Various types of benzotriazole-based stabilizers were evaluated for stabilizing the liquid crystals. Based on spin trapping experiments, radicals generated upon UV exposure is likely responsible for the degradation of the system. The radical generation is competitively inhibited by the addition of stabilizers.

3.
ACS Omega ; 6(42): 27865-27873, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722986

RESUMO

An investigation of spin and conformational dynamics in a series of symmetric Cu-Cu porphyrin dimer solutions is presented using electron paramagnetic resonance (EPR) spectroscopy. Previous spectral simulations focused on the isotropic exchange interaction (J avg) between the Cu centers. In this work, an additional line broadening parameter (J mod) is explored in detail via variable temperature X-band EPR in liquid solution for several different structures. The J mod phenomenon is due to fluctuations in the spin exchange interaction caused by conformational motion of the porphyrin planes. The J mod parameter scales with the inverse of the rotational barriers that determine the Boltzmann-weighted torsional angle distribution between neighboring porphyrin planes. Arrhenius plots allow for extraction of the activation energies for rotation, which are 5.77, 2.84, and 5.31 kJ/mol for ethyne-bridged (porphinato)copper(II)-(porphinato)copper(II), butadiyne-bridged (porphinato)copper(II)-(porphinato)copper(II), and ethyne-bridged (porphinato)copper(II)-(porphinato)zinc(II)-(porphinato)copper(II) complexes, respectively. DFT calculations of these torsional barriers match well with the experimental results. This is the first report of a J mod analysis within a highly anisotropic hyperfine field and demonstrates the utility of the theory for extraction of dynamic information.

4.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 3): 319-323, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33953959

RESUMO

The title compound, [Cu2(C19H23N7O)(C2H3O2)4] n , was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-eth-oxy-N 2,N 4-bis-[2-(pyridin-2-yl)eth-yl]-1,3,5-triazine-2,4-di-amine. The crystallized product adopts the monoclinic P21/c space group. The metal core exhibits a paddle-wheel structure typical for dicopper tetra-acetate units, with triazine and pyridyl nitro-gen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c-glide of the P21/c setting of the space group. The resulting chains running along the c-axis direction are held together by intra-molecular N-H⋯O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure.

5.
Photochem Photobiol Sci ; 20(2): 255-263, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33721251

RESUMO

The photochemistry of Fe(III) coordinated to natural uronate-containing polysaccharides has been investigated quantitatively in aqueous solution. It is demonstrated that the photoreduction of the coordinated Fe(III) to Fe(II) and oxidative decarboxylation occurs in a variety of uronate-containing polysaccharides. The photochemistry of the Fe(III)-polyuronic acid system generated a radical species during the reaction which was studied using the spin trapping technique. The identity of the radical species from this reaction was confirmed as CO2•- indicating that both bond cleavage of the carboxylate and oxidative decarboxylation after ligand to metal charge transfer radical reactions may be taking place upon irradiation. Degradation of the polyuronic acid chain was investigated with dynamic light scattering, showing a decrease in the hydrodynamic radius of the polymer assemblies in solution after light irradiation that correlates with the Fe(II) generation. A decrease in viscosity of Fe(IIII)-alginate after light irradiation was also observed. Additionally, the photochemical reaction was investigated in plant root tissue (parsnip) demonstrating that Fe(III) coordination in these natural materials leads to photoreactivity that degrades the pectin component. These results highlight that this Fe(III)-polyuronic acid can occur in many natural systems and may play a role in biogeochemical cycling of iron and ferrous iron generation in plants with significant polyuronic acid content.

6.
J Am Chem Soc ; 142(43): 18513-18521, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32976712

RESUMO

The creation of ordered arrays of qubits that can be interfaced from the macroscopic world is an essential challenge for the development of quantum information science (QIS) currently being explored by chemists and physicists. Recently, porous metal-organic frameworks (MOFs) have arisen as a promising solution to this challenge as they allow for atomic-level spatial control of the molecular subunits that comprise their structures. To date, no organic qubit candidates have been installed in MOFs despite their structural variability and promise for creating systems with adjustable properties. With this in mind, we report the development of a pillared-paddlewheel-type MOF structure that contains 4,7-bis(2-(4-pyridyl)-ethynyl) isoindoline N-oxide and 1,4-bis(2-(4-pyridyl)-ethynyl)-benzene pillars that connect 2D sheets of 9,10-dicarboxytriptycene struts and Zn2(CO2)4 secondary binding units. The design allows for the formation of ordered arrays of reorienting isoindoline nitroxide spin centers with variable concentrations through the use of mixed crystals containing the secondary 1,4-phenylene pillar. While solvent removal causes decomposition of the MOF, magnetometry measurements of the MOF containing only N-oxide pillars demonstrated magnetic interactions with changes in magnetic moment as a function of temperature between 150 and 5 K. Variable-temperature electron paramagnetic resonance (EPR) experiments show that the nitroxides couple to one another at distances as long as 2 nm, but act independently at distances of 10 nm or more. We also use a specially designed resonance microwave cavity to measure the face-dependent EPR spectra of the crystal, demonstrating that it has anisotropic interactions with impingent electromagnetic radiation.

7.
Chem Sci ; 11(24): 6268-6274, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32953022

RESUMO

Time-resolved electron paramagnetic resonance (TREPR) spectroscopy has been used to study the proton coupled electron transfer (PCET) reaction between a ruthenium complex (Ru(bpz)(bpy)2) and several substituted hydroquinones (HQ). After excitation at 355 nm, the HQ moiety forms a strong hydrogen bond to the exposed N atoms in the bpz heterocycle. At some point afterwards, a PCET reaction takes place in which an electron from the O atom of the hydrogen bond transfers to the metal center, and the proton forming the hydrogen bond remains on the bpz ligand N atom. The result is a semiquinone radical (HQ˙), whose TREPR spectrum is strongly polarized by the triplet mechanism (TM) of chemically induced dynamic electron spin polarization (CIDEP). Closer examination of the CIDEP pattern reveals, in some cases, a small amount of radical pair mechanism (RPM) polarization. We hypothesize that when the HQ moiety has electron donating groups (EDGs) substituted on the ring, S-T- RPM polarization is observed in HQ˙. These anomalous intensities are accounted for by spectral simulation using polarization from S-T- mixing. The generation of S-T- RPM is attributed to slow radical separation after PCET due to stabilization of the positive charge on the ring by EDGs. Results from a temperature dependence support the hypothesis.

8.
J Phys Chem A ; 124(37): 7411-7415, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32794775

RESUMO

Understanding factors that underpin the signs and magnitudes of electron spin-spin couplings in biradicaloids, especially those that are integrated into highly delocalized electronic structures, promises to inform the design of molecular spintronic systems. Using steady-state and variable temperature electron paramagnetic resonance (EPR) spectroscopy, we examine spin dynamics in symmetric, strongly π-conjugated bis[(porphinato)copper] (bis[PCu]) systems and probe the roles played by atom-specific macrocycle spin density, porphyrin-to-porphyrin linkage topology, and orbital symmetry on the magnitudes of electronic spin-spin couplings over substantial Cu-Cu distances. These studies examine the following: (i) meso-to-meso-linked bis[PCu] systems having oligoyne spacers, (ii) meso-to-meso-bridged bis[PCu] arrays in which the PCu centers are separated by a single ethynyl unit or multiple 5,15-diethynyl(porphinato)zinc(II) units, and (iii) the corresponding ß-to-ß-bridged bis[PCu] structures. EPR data show that, for ß-to-ß-bridged systems and meso-to-meso-linked bis[PCu] structures having oligoyne spacers, a through σ-bond coupling mechanism controls the average exchange interaction (Javg). In contrast, PCu centers separated by a single ethynyl or multiple 5,15-diethynyl(porphinato)zinc(II) units display a phenomenological decay of ln[Javg] versus Cu-Cu σ-bond separation number of ∼0.115 per bond, half as large as for these other compositions, congruent with the importance of π-mediated spin-spin coupling. These disparities derive from effects that trace their origin to the nature of the macrocycle-macrocycle linkage topology and the relative energy of the Cu dx2-y2 singly occupied molecular orbital within the frontier orbital manifold of these electronically delocalized structures. This work provides insight into approaches to tune the extent of spin exchange interactions and distance-dependent electronic spin-spin coupling magnitudes in rigid, highly conjugated biradicaloids.

9.
Proc Natl Acad Sci U S A ; 117(9): 4921-4930, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32071223

RESUMO

Antibiotic-resistant superbug bacteria represent a global health problem with no imminent solutions. Here we demonstrate that the combination (termed AB569) of acidified nitrite (A-NO2-) and Na2-EDTA (disodium ethylenediaminetetraacetic acid) inhibited all Gram-negative and Gram-positive bacteria tested. AB569 was also efficacious at killing the model organism Pseudomonas aeruginosa in biofilms and in a murine chronic lung infection model. AB569 was not toxic to human cell lines at bactericidal concentrations using a basic viability assay. RNA-Seq analyses upon treatment of P. aeruginosa with AB569 revealed a catastrophic loss of the ability to support core pathways encompassing DNA, RNA, protein, ATP biosynthesis, and iron metabolism. Electrochemical analyses elucidated that AB569 produced more stable SNO proteins, potentially explaining one mechanism of bacterial killing. Our data implicate that AB569 is a safe and effective means to kill pathogenic bacteria, suggesting that simple strategies could be applied with highly advantageous therapeutic/toxicity index ratios to pathogens associated with a myriad of periepithelial infections and related disease scenarios.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Ácido Edético/farmacologia , Nitrito de Sódio/farmacologia , Animais , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácido Edético/química , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Redes e Vias Metabólicas , Camundongos , Nitritos/química , Nitritos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
10.
J Am Chem Soc ; 142(1): 502-511, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31814397

RESUMO

Substituted triphenylamine (TPA) radical cations show great potential as oxidants and as spin-containing units in polymer magnets. Their properties can be further tuned by supramolecular assembly. Here, we examine how the properties of photogenerated radical cations, intrinsic to TPA macrocycles, are altered upon their self-assembly into one-dimensional columns. These macrocycles consist of two TPAs and two methylene ureas, which drive the assembly into porous organic materials. Advantageously, upon activation the crystals can undergo guest exchange in a single-crystal-to-single-crystal transformation generating a series of isoskeletal host-guest complexes whose properties can be directly compared. Photoinduced electron transfer, initiated using 365 nm light-emitting diodes, affords radicals at room temperature as observed by electron paramagnetic resonance (EPR) spectroscopy. The line shape of the EPR spectra and the quantity of radicals can be modulated by both polarity and heavy atom inclusion of the encapsulated guest. These photogenerated radicals are persistent, with half-lives between 1 and 7 d and display no degradation upon radical decay. Re-irradiation of the samples can restore the radical concentration back to a similar maximum concentration, a feature that is reproducible over several cycles. EPR simulations of a representative spectrum indicate two species, one containing two N hyperfine interactions and an additional broad signal with no resolvable hyperfine interaction. Intriguingly, TPA analogues without bromine substitution also exhibit similar quantities of photogenerated radicals, suggesting that supramolecular strategies can enable more flexibility in stable TPA radical structures. These studies will help guide the development of new photoactive materials.

11.
Nat Rev Chem ; 4(9): 490-504, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37127960

RESUMO

The power of chemistry to prepare new molecules and materials has driven the quest for new approaches to solve problems having global societal impact, such as in renewable energy, healthcare and information science. In the latter case, the intrinsic quantum nature of the electronic, nuclear and spin degrees of freedom in molecules offers intriguing new possibilities to advance the emerging field of quantum information science. In this Perspective, which resulted from discussions by the co-authors at a US Department of Energy workshop held in November 2018, we discuss how chemical systems and reactions can impact quantum computing, communication and sensing. Hierarchical molecular design and synthesis, from small molecules to supramolecular assemblies, combined with new spectroscopic probes of quantum coherence and theoretical modelling of complex systems, offer a broad range of possibilities to realize practical quantum information science applications.

12.
Nat Chem ; 11(11): 967-969, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31654048
13.
Proc Natl Acad Sci U S A ; 116(29): 14398-14400, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31266894
14.
J Am Chem Soc ; 139(29): 9759-9762, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28578583

RESUMO

Spin and conformational dynamics in symmetric alkyne-bridged multi[copper(II) porphyrin] structures have been studied in toluene solution at variable temperature using steady-state electron paramagnetic resonance (EPR) spectroscopy. Comparison of the dimer EPR spectra to those of Cu porphyrin monomers shows evidence of an isotropic exchange interaction (Javg) in these biradicaloid structures, manifested by a significant line broadening in the dimer spectra. The extent line broadening depends on molecular structure and temperature, suggesting Javg is modulated by conformational dynamics that impact the torsional angle distribution between the porphyrin-porphyrin least-squares planes. Computational simulation of the experimental EPR spectra, using a developed algorithm for J modulation in flexible organic biradicals, supports this hypothesis. Comparison of ethyne and butadiyne alkyne bridges reveals remarkable sensitivity to orbital interactions between the spacer and the metal, reflected in measurements of Javg as a function of temperature. The results suggest orbital symmetry relationships may be more important than recognized in design of optimized molecular spintronic devices.

15.
J Am Chem Soc ; 139(23): 7681-7684, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28509547

RESUMO

Viologen-tetraarylborate ion-pair complexes were prepared and investigated by steady-state and time-resolved spectroscopic techniques such as fluorescence and femtosecond transient absorption. The results highlight a charge transfer transition that leads to changes in the viologen structure in the excited singlet state. Femtosecond transient absorption reveals the formation of excited-state absorption and stimulated emission bands assigned to the planar (kobs < 1012 s-1) and twisted (kobs ∼ 1010 s-1) structures between two pyridinium groups in the viologen ion. An efficient photoinduced electron transfer from the tetraphenylborate anionic moiety to the viologen dication was observed less than 1 µs after excitation. This is a consequence of the push-pull character of the electron donor twisted viologen structure, which helps formation of the borate triplet state. The borate triplet state is deactivated further via a second electron transfer process, generating viologen cation radical (V•+).

16.
Chemistry ; 23(34): 8315-8319, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28423212

RESUMO

UV-irradiation of a self-assembled benzophenone bis-urea macrocycle generates µm amounts of radicals that persist for weeks under ambient conditions. High-field EPR and variable-temperature X-band EPR studies suggest a resonance stabilized radical pair through H-abstraction. These endogenous radicals were applied as a polarizing agent for magic angle spinning (MAS) dynamic nuclear polarization (DNP) NMR enhancement. The field-stepped DNP enhancement profile exhibits a sharp peak with a maximum enhancement of ϵon/off =4 superimposed on a nearly constant DNP enhancement of ϵon/off =2 over a broad field range. This maximum coincides with the high field EPR absorption spectrum, consistent with an Overhauser effect mechanism. DNP enhancement was observed for both the host and guests, suggesting that even low levels of endogenous radicals can facilitate the study of host-guest relationships in the solid-state.

17.
Photochem Photobiol Sci ; 15(9): 1124-1137, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27529675

RESUMO

The photophysics and reactivity of two tetraphenylborate salts and triphenylborane have been studied using ultrafast transient absorption, steady-state fluorescence, electron paramagnetic resonance with spin trapping, and DFT calculations. The singlet excited state of tetraarylborates exhibit extended π-orbital coupling between two adjacent aryl groups. The maximum fluorescence band, as well as the transient absorption bands centered at 560 nm (τ = 1.05 ns) and 680 nm (τ = 4.35 ns) are influenced by solvent viscosity and polarity, indicative of a twisted intramolecular charge transfer (TICT) state. Orbital contour plots of the HOMO and LUMO orbitals of the tetraarylboron compounds support the existence of electron delocalization between two aryl groups in the LUMO. This TICT-state and aryl-aryl electron extension is not observed for the trigonal arylboron compound, in which excited π-orbital coupling only occurs between the boron atom and one aryl group, which restricts the twist motion of the aryl-boron bond. The excited triplet state is deactivated primarily through aryl-boron bond cleavage, yielding aryl and diphenylboryl radicals. In the presence of oxygen, this photochemistry results in phenoxyl and diphenylboroxyl radicals, as confirmed by EPR spectroscopy of spin trapped radical adducts. The TICT transition and radical generation is not expected for BoDIPY molecules where the rotational vibration of the B-aryl bond is rigid, restricting changes in the geometric structure. In this sense, this work contributes to the development of new BoDIPY derivatives where the TICT transition may be observed for aryl ligands with free rotational vibrations in the BoDIPY structure.


Assuntos
Compostos de Boro/química , Processos Fotoquímicos , Estrutura Molecular , Teoria Quântica
18.
Inorg Chem ; 55(5): 1962-9, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26848595

RESUMO

Cobalamins are known to react with thiols to yield stable ß-axial Co(III)-S bonded thiolato-cobalamin complexes. However, in stark contrast to the Co-C bond in alkylcobalamins, the photolability of the Co-S bond in thiolato-cobalamins remains undetermined. We have investigated the photolysis of N-acetylcysteinyl cob(III)alamin at several wavelengths within the ultraviolet and visible spectrum. To aid in photolysis, we show that attaching fluorophore "antennae" to the cobalamin scaffold can improve photolytic efficiency by up to an order of magnitude. Additionally, electron paramagnetic resonance confirms previous conjectures that the photolysis of thiolato-cobalamins at wavelengths as long as 546 nm produces thiyl radicals.


Assuntos
Corantes Fluorescentes/química , Fotólise , Vitamina B 12/química , Cromatografia Líquida , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Compostos de Sulfidrila/química
19.
J Am Chem Soc ; 137(9): 3372-8, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25697508

RESUMO

Medical hydrogel applications have expanded rapidly over the past decade. Implantation in patients by noninvasive injection is preferred, but this requires hydrogel solidification from a low viscosity solution to occur in vivo via an applied stimuli. Transdermal photo-cross-linking of acrylated biopolymers with photoinitiators and lights offers a mild, spatiotemporally controlled solidification trigger. However, the current short wavelength initiators limit curing depth and efficacy because they do not absorb within the optical window of tissue (600-900 nm). As a solution to the current wavelength limitations, we report the development of a red light responsive initiator capable of polymerizing a range of acrylated monomers. Photoactivation occurs within a range of skin type models containing high biochromophore concentrations.


Assuntos
Hidrogéis/química , Teste de Materiais/métodos , Fotoquímica/métodos , Vitamina B 12/química , Acrilatos/química , Sobrevivência Celular , Células Hep G2 , Humanos , Luz , Melaninas/química , Fotólise , Polietilenoglicóis/química , Polimerização , Propano/análogos & derivados , Propano/química , Pele
20.
Photochem Photobiol ; 91(3): 672-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25682983

RESUMO

A series of covalently bound phenothiazine (PHZ) donor and methylviologen (V) acceptor compounds with polymethylene chain spacers (C8 , C10 , C12 ) were incorporated in a "through-ring" (rotaxane) fashion to α-cyclodextrin (α-CD) hosts such that the alkyl chains were fully extended, with the donor and acceptor on opposite sides of the α-CD cylinder. Photoexcitation of the PHZ unit induces electron transfer from the PHZ first excited triplet state to the V moiety, forming a biradicaloid charge-separated state. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy at the X-band and Q-band microwave frequencies was used to investigate the spin exchange interaction, J, in these biradicaloids. Simulation of the spectra using a "static" model for spin-correlated radical pairs allows extraction of the J values, which are negative in sign and have absolute values range from 2 to 1000 Gauss. Comparison of the PHZn V (n = 8, 10, 12) spectra to those obtained using phenyl ether spacers indicates that π-bonds may assist the electronic coupling. The results are discussed in terms of through-bond vs through-space electronic coupling mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA