Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Atherosclerosis ; 397: 118570, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39276419

RESUMO

BACKGROUND AND AIMS: CCN4/WISP-1 regulates various cell behaviours that contribute to atherosclerosis progression, including cell adhesion, migration, proliferation and survival. We therefore hypothesised that CCN4 regulates the development and progression of atherosclerotic plaques. METHODS: We used a high fat fed ApoE-/- mouse model to study atherosclerotic plaque progression in the brachiocephalic artery and aortic root. In protocol 1, male ApoE-/- mice with established plaques were given a CCN4 helper-dependent adenovirus to see the effect of treatment with CCN4, while in protocol 2 male CCN4-/-ApoE-/- were compared to CCN4+/+ApoE-/- mice to assess the effect of CCN4 deletion on plaque progression. RESULTS: CCN4 overexpression resulted in reduced occlusion of the brachiocephalic artery with less apoptosis, fewer macrophages, and attenuated lipid core size. The amount of plaque found on the aortic root was also reduced. CCN4 deficiency resulted in increased apoptosis and occlusion of the brachiocephalic artery as well as increased plaque in the aortic root. Additionally, in vitro cells from CCN4-/-ApoE-/- mice had higher apoptotic levels. CCN4 deficiency did not significantly affect blood cholesterol levels or circulating myeloid cell populations. CONCLUSIONS: We conclude that in an atherosclerosis model the most important action of CCN4 is the effect on cell apoptosis. CCN4 provides pro-survival signals and leads to reduced cell death, lower macrophage number, smaller lipid core size and reduced atherosclerotic plaque burden. As such, the pro-survival effect of CCN4 is worthy of further investigation, in a bid to find a therapeutic for atherosclerosis.


Assuntos
Apoptose , Aterosclerose , Placa Aterosclerótica , Animais , Masculino , Camundongos , Aorta/patologia , Aorta/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Tronco Braquiocefálico/patologia , Tronco Braquiocefálico/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Proteínas de Sinalização Intercelular CCN/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE
2.
Am J Physiol Cell Physiol ; 321(5): C826-C845, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495764

RESUMO

Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Trombospondinas/metabolismo , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Trombospondinas/genética
3.
J Cell Commun Signal ; 15(3): 421-432, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34080128

RESUMO

Patients with abdominal aortic aneurysms are frequently treated with high-risk surgery. A pharmaceutical treatment to reverse aneurysm progression could prevent the need for surgery and save both lives and healthcare resources. Since CCN4 regulates cell migration, proliferation and apoptosis, processes involved in aneurysm progression, it is a potential regulator of aneurysm progression. We investigated the role of CCN4 in a mouse aneurysm model, using apolipoprotein-E knockout (ApoE-/-) mice fed high fat diet and infused with Angiotensin II (AngII). Blood pressure was similarly elevated in CCN4-/-ApoE-/- mice and CCN4+/+ApoE-/- mice (controls) in response to AngII infusion. Deletion of CCN4 significantly reduced the number of ruptured aortae, both thoracic and abdominal aortic area, and aneurysm grade score, compared to controls. Additionally, the frequency of vessel wall remodelling and the number of elastic lamina breaks was significantly suppressed in CCN4-/-ApoE-/- mice compared to controls. Immunohistochemistry revealed a significantly lower proportion of macrophages, while the proportion of smooth muscle cells was not affected by the deletion of CCN4. There was also a reduction in both proliferation and apoptosis in CCN4-/-ApoE-/- mice compared to controls. In vitro studies showed that CCN4 significantly increased monocyte adhesion beyond that seen with TNFα and stimulated macrophage migration by more than threefold. In summary, absence of CCN4 reduced aneurysm severity and improved aortic integrity, which may be the result of reduced macrophage infiltration and cell apoptosis. Inhibition of CCN4 could offer a potential therapeutic approach for the treatment of aneurysms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA