RESUMO
Schizophrenia is associated with robust white matter (WM) abnormalities but influences of potentially confounding variables and relationships with cognitive performance and symptom severity remain to be fully determined. This study was designed to evaluate WM abnormalities based on diffusion tensor imaging (DTI) in individuals with schizophrenia, and their relationships with cognitive performance and symptom severity. Data from individuals with schizophrenia (SZ; n=138, mean age±SD=39.02±11.82; 105 males) and healthy controls (HC; n=143, mean age±SD=37.07±10.84; 102 males) were collected as part of the Function Biomedical Informatics Research Network Phase 3 study. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were compared between individuals with schizophrenia and healthy controls, and their relationships with neurocognitive performance and symptomatology assessed. Individuals with SZ had significantly lower FA in forceps minor and the left inferior fronto-occipital fasciculus compared to HC. FA in several tracts were associated with speed of processing and attention/vigilance and the severity of the negative symptom alogia. This study suggests that regional WM abnormalities are fundamentally involved in the pathophysiology of schizophrenia and may contribute to cognitive performance deficits and symptom expression observed in schizophrenia.
Assuntos
Imagem de Tensor de Difusão , Esquizofrenia , Substância Branca , Humanos , Masculino , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Adulto , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/fisiopatologiaRESUMO
The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.
Assuntos
Estudo de Associação Genômica Ampla , Cabeça , Neoplasias , Humanos , Cabeça/anatomia & histologia , Neoplasias/genética , Neoplasias/patologia , Feminino , Masculino , Polimorfismo de Nucleotídeo Único/genética , Variação Genética , Tamanho do Órgão/genética , Transdução de Sinais/genética , Adulto , Predisposição Genética para DoençaRESUMO
Long COVID (LongC) is associated with a myriad of symptoms including cognitive impairment. We reported at the beginning of the COVID-19 pandemic that neuronal-enriched or L1CAM+ extracellular vesicles (nEVs) from people with LongC contained proteins associated with Alzheimer's disease (AD). Since that time, a subset of people with prior COVID infection continue to report neurological problems more than three months after infection. Blood markers to better characterize LongC are elusive. To further identify neuronal proteins associated with LongC, we maximized the number of nEVs isolated from plasma by developing a hybrid EV Microfluidic Affinity Purification (EV-MAP) technique. We isolated nEVs from people with LongC and neurological complaints, AD, and HIV infection with mild cognitive impairment. Using the OLINK platform that assesses 384 neurological proteins, we identified 11 significant proteins increased in LongC and 2 decreased (BST1, GGT1). Fourteen proteins were increased in AD and forty proteins associated with HIV cognitive impairment were elevated with one decreased (IVD). One common protein (BST1) was decreased in LongC and increased in HIV. Six proteins (MIF, ENO1, MESD, NUDT5, TNFSF14 and FYB1) were expressed in both LongC and AD and no proteins were common to HIV and AD. This study begins to identify differences and similarities in the neuronal response to LongC versus AD and HIV infection.
Assuntos
Doença de Alzheimer , COVID-19 , Vesículas Extracelulares , Infecções por HIV , Humanos , Síndrome de COVID-19 Pós-Aguda , Microfluídica , PandemiasRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists throughout the world with over 65 million registered cases of survivors with post-COVID-19 sequelae, also known as LongCOVID-19 (LongC). LongC survivors exhibit various symptoms that span multiple organ systems, including the nervous system. To search for neurological markers of LongC, we investigated the soluble biomolecules present in the plasma and the proteins associated with plasma neuronal-enriched extracellular vesicles (nEVs) in 33 LongC patients with neurological impairment (nLongC), 12 COVID-19 survivors without any LongC symptoms (Cov), and 28 pre-COVID-19 healthy controls (HC). COVID-19 positive participants were infected between 2020 and 2022, not hospitalized, and were vaccinated or unvaccinated before infection. IL-1ß was significantly increased in both nLongC and Cov and IL-8 was elevated in only nLongC. Both brain-derived neurotrophic factor and cortisol were significantly elevated in nLongC and Cov compared to HC. nEVs from people with nLongC had significantly elevated protein markers of neuronal dysfunction, including amyloid beta 42, pTau181 and TDP-43. This study shows chronic peripheral inflammation with increased stress after COVID-19 infection. Additionally, differentially expressed nEV neurodegenerative proteins were identified in people recovering from COVID-19 regardless of persistent symptoms.
Assuntos
Peptídeos beta-Amiloides , COVID-19 , Humanos , SARS-CoV-2 , Inflamação , NeurôniosRESUMO
BACKGROUND: Sensory prediction allows the brain to anticipate and parse incoming self-generated sensory information from externally generated signals. Sensory prediction breakdowns may contribute to perceptual and agency abnormalities in psychosis (hallucinations, delusions). The pons, a central node in a cortico-ponto-cerebellar-thalamo-cortical circuit, is thought to support sensory prediction. Examination of pons connectivity in schizophrenia and its role in sensory prediction abnormalities is lacking. METHODS: We examined these relationships using resting-state functional magnetic resonance imaging and the electroencephalography-based auditory N1 event-related potential in 143 participants with psychotic spectrum disorders (PSPs) (with schizophrenia, schizoaffective disorder, or bipolar disorder); 63 first-degree relatives of individuals with psychosis; 45 people at clinical high risk for psychosis; and 124 unaffected comparison participants. This unique sample allowed examination across the psychosis spectrum and illness trajectory. Seeding from the pons, we extracted average connectivity values from thalamic and cerebellar clusters showing differences between PSPs and unaffected comparison participants. We predicted N1 amplitude attenuation during a vocalization task from pons connectivity and group membership. We correlated participant-level connectivity in PSPs and people at clinical high risk for psychosis with hallucination and delusion severity. RESULTS: Compared to unaffected comparison participants, PSPs showed pons hypoconnectivity to 2 cerebellar clusters, and first-degree relatives of individuals with psychosis showed hypoconnectivity to 1 of these clusters. Pons-to-cerebellum connectivity was positively correlated with N1 attenuation; only PSPs with heightened pons-to-postcentral gyrus connectivity showed this pattern, suggesting a possible compensatory mechanism. Pons-to-cerebellum hypoconnectivity was correlated with greater hallucination severity specifically among PSPs with schizophrenia. CONCLUSIONS: Deficient pons-to-cerebellum connectivity linked sensory prediction network breakdowns with perceptual abnormalities in schizophrenia. Findings highlight shared features and clinical heterogeneity across the psychosis spectrum.
Assuntos
Cerebelo , Eletroencefalografia , Alucinações , Imageamento por Ressonância Magnética , Ponte , Transtornos Psicóticos , Esquizofrenia , Humanos , Alucinações/fisiopatologia , Esquizofrenia/fisiopatologia , Esquizofrenia/complicações , Masculino , Feminino , Adulto , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/complicações , Ponte/fisiopatologia , Cerebelo/fisiopatologia , Cerebelo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Adulto JovemRESUMO
The 1965 discovery of the P300 component of the electroencephalography (EEG)-based event-related potential (ERP), along with the subsequent identification of its alteration in people with schizophrenia, initiated over 50 years of P300 research in schizophrenia. Here, we review what we now know about P300 in schizophrenia after nearly six decades of research. We describe recent efforts to expand our understanding of P300 beyond its sensitivity to schizophrenia itself to its potential role as a biomarker of risk for psychosis or a heritable endophenotype that bridges genetic risk and psychosis phenomenology. We also highlight efforts to move beyond a syndrome-based approach to understand P300 within the context of the clinical, cognitive, and presumed pathophysiological heterogeneity among people diagnosed with schizophrenia. Finally, we describe several recent approaches that extend beyond measuring the traditional P300 ERP component in people with schizophrenia, including time-frequency analyses and pharmacological challenge studies, that may help to clarify specific cognitive mechanisms that are disrupted in schizophrenia. Moreover, we discuss several promising areas for future research, including studies of animal models that can be used for treatment development.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Eletroencefalografia , Potenciais Evocados P300/fisiologia , Potenciais EvocadosRESUMO
Individuals with schizophrenia (SZ) show aberrant activations, assessed via functional magnetic resonance imaging (fMRI), during auditory oddball tasks. However, associations with cognitive performance and genetic contributions remain unknown. This study compares individuals with SZ to healthy volunteers (HVs) using two cross-sectional data sets from multi-center brain imaging studies. It examines brain activation to auditory oddball targets, and their associations with cognitive domain performance, schizophrenia polygenic risk scores (PRS), and genetic variation (loci). Both sample 1 (137 SZ vs. 147 HV) and sample 2 (91 SZ vs. 98 HV), showed hypoactivation in SZ in the left-frontal pole, and right frontal orbital, frontal pole, paracingulate, intracalcarine, precuneus, supramarginal and hippocampal cortices, and right thalamus. In SZ, precuneus activity was positively related to cognitive performance. Schizophrenia PRS showed a negative correlation with brain activity in the right-supramarginal cortex. GWA analyses revealed significant single-nucleotide polymorphisms associated with right-supramarginal gyrus activity. RPL36 also predicted right-supramarginal gyrus activity. In addition to replicating hypoactivation for oddball targets in SZ, this study identifies novel relationships between regional activity, cognitive performance, and genetic loci that warrant replication, emphasizing the need for continued data sharing and collaborative efforts.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/complicações , Estudos Transversais , Encéfalo , Córtex Cerebral , Lobo FrontalRESUMO
This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. We apply our proposed framework, which disentangles multimodal data into private and shared sets of features from pairs of structural (sMRI), functional (sFNC and ICA), and diffusion MRI data (FA maps). With our approach, we find that heterogeneity in schizophrenia is potentially a function of modality pairs. Results show (1) schizophrenia is highly multimodal and includes changes in specific networks, (2) non-linear relationships with schizophrenia are observed when interpolating among shared latent dimensions, and (3) we observe a decrease in the modularity of functional connectivity and decreased visual-sensorimotor connectivity for schizophrenia patients for the FA-sFNC and sMRI-sFNC modality pairs, respectively. Additionally, our results generally indicate decreased fractional corpus callosum anisotropy, and decreased spatial ICA map and voxel-based morphometry strength in the superior frontal lobe as found in the FA-sFNC, sMRI-FA, and sMRI-ICA modality pair clusters. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data which we hope challenges the reader to think differently about how modalities interact.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem , Imagem de Difusão por Ressonância MagnéticaRESUMO
BACKGROUND: Mismatch negativity reductions are among the most reliable biomarkers for schizophrenia and have been associated with increased risk for conversion to psychosis in individuals who are at clinical high risk for psychosis (CHR-P). Here, we adopted a computational approach to develop a mechanistic model of mismatch negativity reductions in CHR-P individuals and patients early in the course of schizophrenia. METHODS: Electroencephalography was recorded in 38 CHR-P individuals (15 converters), 19 patients early in the course of schizophrenia (≤5 years), and 44 healthy control participants during three different auditory oddball mismatch negativity paradigms including 10% duration, frequency, or double deviants, respectively. We modeled sensory learning with the hierarchical Gaussian filter and extracted precision-weighted prediction error trajectories from the model to assess how the expression of hierarchical prediction errors modulated electroencephalography amplitudes over sensor space and time. RESULTS: Both low-level sensory and high-level volatility precision-weighted prediction errors were altered in CHR-P individuals and patients early in the course of schizophrenia compared with healthy control participants. Moreover, low-level precision-weighted prediction errors were significantly different in CHR-P individuals who later converted to psychosis compared with nonconverters. CONCLUSIONS: Our results implicate altered processing of hierarchical prediction errors as a computational mechanism in early psychosis consistent with predictive coding accounts of psychosis. This computational model seems to capture pathophysiological mechanisms that are relevant to early psychosis and the risk for future psychosis in CHR-P individuals and may serve as predictive biomarkers and mechanistic targets for the development of novel treatments.
Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Eletroencefalografia , BiomarcadoresRESUMO
Converging evidence suggests that schizophrenia (SZ) with primary, enduring negative symptoms (i.e., Deficit SZ (DSZ)) represents a distinct entity within the SZ spectrum while the neurobiological underpinnings remain undetermined. In the largest dataset of DSZ and Non-Deficit (NDSZ), we conducted a meta-analysis of data from 1560 individuals (168 DSZ, 373 NDSZ, 1019 Healthy Controls (HC)) and a mega-analysis of a subsampled data from 944 individuals (115 DSZ, 254 NDSZ, 575 HC) collected across 9 worldwide research centers of the ENIGMA SZ Working Group (8 in the mega-analysis), to clarify whether they differ in terms of cortical morphology. In the meta-analysis, sites computed effect sizes for differences in cortical thickness and surface area between SZ and control groups using a harmonized pipeline. In the mega-analysis, cortical values of individuals with schizophrenia and control participants were analyzed across sites using mixed-model ANCOVAs. The meta-analysis of cortical thickness showed a converging pattern of widespread thinner cortex in fronto-parietal regions of the left hemisphere in both DSZ and NDSZ, when compared to HC. However, DSZ have more pronounced thickness abnormalities than NDSZ, mostly involving the right fronto-parietal cortices. As for surface area, NDSZ showed differences in fronto-parietal-temporo-occipital cortices as compared to HC, and in temporo-occipital cortices as compared to DSZ. Although DSZ and NDSZ show widespread overlapping regions of thinner cortex as compared to HC, cortical thinning seems to better typify DSZ, being more extensive and bilateral, while surface area alterations are more evident in NDSZ. Our findings demonstrate for the first time that DSZ and NDSZ are characterized by different neuroimaging phenotypes, supporting a nosological distinction between DSZ and NDSZ and point toward the separate disease hypothesis.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Imageamento por Ressonância Magnética , Neuroimagem , Lobo Parietal , Síndrome , Córtex Cerebral/diagnóstico por imagemRESUMO
Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ biomarker development, as several neuroimaging-based studies comparing individuals with SZ to healthy controls (HC) have shown measurable group differences in brain structure, as well as functional brain alterations in both static and dynamic functional network connectivity (sFNC and dFNC, respectively). The recently proposed filter-banked connectivity (FBC) method extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary number of distinct frequency bands. The initial implementation used a set of filters spanning the full connectivity spectral range, providing a unified approach to examine both sFNC and dFNC in a single analysis. Initial FBC results found that individuals with SZ spend more time in a less structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific component underpinning the functional dysconnectivity observed in SZ. Building on these findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical correlation analysis + joint independent components analysis (mCCA + jICA) data fusion framework to study the connection between grey matter volume (GMV) maps and FBC states across the full connectivity frequency spectrum. Our multimodal analysis identified two joint sources that captured co-varying patterns of frequency-specific functional connectivity and alterations in GMV with significant group differences in loading parameters between the SZ group and HC. The first joint source linked frequency-modulated connections between the subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, while the second joint source identified a relationship between low-frequency cerebellar-sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. Together, these results show a strong connection between cortico-subcortical functional connectivity at both high and low frequencies and alterations in cortical GMV that may be relevant to the pathogenesis and pathophysiology of SZ.
RESUMO
This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. By linking colors to private and shared information from modalities, we introduce chromatic fusion, a framework that allows for intuitively interpreting multimodal data. We test our framework on structural, functional, and diffusion modality pairs. In this framework, we use a multimodal variational autoencoder to learn separate latent subspaces; a private space for each modality, and a shared space between both modalities. These subspaces are then used to cluster subjects, and colored based on their distance from the variational prior, to obtain meta-chromatic patterns (MCPs). Each subspace corresponds to a different color, red is the private space of the first modality, green is the shared space, and blue is the private space of the second modality. We further analyze the most schizophrenia-enriched MCPs for each modality pair and find that distinct schizophrenia subgroups are captured by schizophrenia-enriched MCPs for different modality pairs, emphasizing schizophrenia's heterogeneity. For the FA-sFNC, sMRI-ICA, and sMRI-ICA MCPs, we generally find decreased fractional corpus callosum anisotropy and decreased spatial ICA map and voxel-based morphometry strength in the superior frontal lobe for schizophrenia patients. To additionally highlight the importance of the shared space between modalities, we perform a robustness analysis of the latent dimensions in the shared space across folds. These robust latent dimensions are subsequently correlated with schizophrenia to reveal that for each modality pair, multiple shared latent dimensions strongly correlate with schizophrenia. In particular, for FA-sFNC and sMRI-sFNC shared latent dimensions, we respectively observe a reduction in the modularity of the functional connectivity and a decrease in visual-sensorimotor connectivity for schizophrenia patients. The reduction in modularity couples with increased fractional anisotropy in the left part of the cerebellum dorsally. The reduction in the visual-sensorimotor connectivity couples with a reduction in the voxel-based morphometry generally but increased dorsal cerebellum voxel-based morphometry. Since the modalities are trained jointly, we can also use the shared space to try and reconstruct one modality from the other. We show that cross-reconstruction is possible with our network and is generally much better than depending on the variational prior. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data that we hope challenges the reader to think differently about how modalities interact.
RESUMO
Functional magnetic resonance imaging (fMRI) scanners are unavoidably loud and uncomfortable experimental tools that are necessary for schizophrenia (SZ) neuroscience research. The validity of fMRI paradigms might be undermined by well-known sensory processing abnormalities in SZ that could exert distinct effects on neural activity in the presence of scanner background sound. Given the ubiquity of resting-state fMRI (rs-fMRI) paradigms in SZ research, elucidating the relationship between neural, hemodynamic, and sensory processing deficits during scanning is necessary to refine the construct validity of the MR neuroimaging environment. We recorded simultaneous electroencephalography (EEG)-fMRI at rest in people with SZ (n = 57) and healthy control participants without a psychiatric diagnosis (n = 46) and identified gamma EEG activity in the same frequency range as the background sounds emitted from our scanner during a resting-state sequence. In participants with SZ, gamma coupling to the hemodynamic signal was reduced in bilateral auditory regions of the superior temporal gyri. Impaired gamma-hemodynamic coupling was associated with sensory gating deficits and worse symptom severity. Fundamental sensory-neural processing deficits in SZ are present at rest when considering scanner background sound as a "stimulus." This finding may impact the interpretation of rs-fMRI activity in studies of people with SZ. Future neuroimaging research in SZ might consider background sound as a confounding variable, potentially related to fluctuations in neural excitability and arousal.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Eletroencefalografia , Imageamento por Ressonância Magnética/métodos , Nível de Alerta , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodosRESUMO
BACKGROUND: Alterations in the brain's reward system may underlie motivation and pleasure deficits in schizophrenia (SZ). Neuro-oscillatory desynchronization in the alpha band is thought to direct resource allocation away from the internal state, to prioritize processing salient environmental events, including reward feedback. We hypothesized reduced reward-related alpha event-related desynchronization (ERD) in SZ, consistent with less externally focused processing during reward feedback. METHODS: Electroencephalography was recorded while participants with SZ (n = 54) and healthy control participants (n = 54) played a simple slot machine task. Total alpha band power (8-14 Hz), a measure of neural oscillation magnitude, was extracted via principal component analysis and compared between groups and reward outcomes. The clinical relevance of hypothesized alpha power alterations was examined by testing associations with negative symptoms within the SZ group and with trait rumination, dimensionally, across groups. RESULTS: A group × reward outcome interaction (p = .018) was explained by healthy control participants showing significant posterior-occipital alpha power suppression to wins versus losses (p < .001), in contrast to participants with SZ (p > .1). Among participants with SZ, this alpha ERD was unrelated to negative symptoms (p > .1). Across all participants, less alpha ERD to reward outcomes covaried with greater trait rumination for both win (p = .005) and loss (p = .002) outcomes, with no group differences in slope. CONCLUSIONS: These findings demonstrate alpha ERD alterations in SZ during reward outcome processing. Additionally, higher trait rumination was associated with less alpha ERD during reward feedback, suggesting that individual differences in rumination covary with external attention to reward processing, regardless of reward outcome valence or group membership.
Assuntos
Esquizofrenia , Humanos , Eletroencefalografia , Motivação , Recompensa , Psicologia do EsquizofrênicoRESUMO
Brain dysconnectivity has been posited as a biological marker of schizophrenia. Emerging schizophrenia connectome research has focused on rich-club organization, a tendency for brain hubs to be highly-interconnected but disproportionately vulnerable to dysconnectivity. However, less is known about rich-club organization in individuals at clinical high-risk for psychosis (CHR-P) and how it compares with abnormalities early in schizophrenia (ESZ). Combining diffusion tensor imaging (DTI) and magnetic resonance imaging (MRI), we examined rich-club and global network organization in CHR-P (n = 41) and ESZ (n = 70) relative to healthy controls (HC; n = 74) after accounting for normal aging. To characterize rich-club regions, we examined rich-club MRI morphometry (thickness, surface area). We also examined connectome metric associations with symptom severity, antipsychotic dosage, and in CHR-P specifically, transition to a full-blown psychotic disorder. ESZ had fewer connections among rich-club regions (ps < .024) relative to HC and CHR-P, with this reduction specific to the rich-club even after accounting for other connections in ESZ relative to HC (ps < .048). There was also cortical thinning of rich-club regions in ESZ (ps < .013). In contrast, there was no strong evidence of global network organization differences among the three groups. Although connectome abnormalities were not present in CHR-P overall, CHR-P converters to psychosis (n = 9) had fewer connections among rich-club regions (ps < .037) and greater modularity (ps < .037) compared to CHR-P non-converters (n = 19). Lastly, symptom severity and antipsychotic dosage were not significantly associated with connectome metrics (ps < .012). Findings suggest that rich-club and connectome organization abnormalities are present early in schizophrenia and in CHR-P individuals who subsequently transition to psychosis.
Assuntos
Antipsicóticos , Conectoma , Transtornos Psicóticos , Esquizofrenia , Humanos , Adolescente , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/complicações , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/complicações , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagemRESUMO
BACKGROUND: Amplitude reduction of mismatch negativity (MMN), an event-related potential component indexing NMDA receptor-dependent auditory echoic memory and predictive coding, is widely replicated in schizophrenia. Time-frequency analyses of single-trial electroencephalography epochs suggest that theta oscillation abnormalities underlie MMN deficits in schizophrenia. However, this has received less attention in early schizophrenia (ESZ). METHODS: Patients with ESZ (n = 89), within 5 years of illness onset, and healthy control subjects (n = 105) completed an electroencephalography MMN paradigm (duration-deviant, pitch-deviant, duration + pitch double-deviant). Repeated measures analyses of variance assessed group differences in MMN, theta intertrial phase coherence (ITC), and theta total power from frontocentral electrodes, after normal age adjustment. Group differences were retested after covarying MMN and theta measures. RESULTS: Relative to healthy control subjects, patients with ESZ showed auditory deviance deficits. Patients with ESZ had MMN deficits for duration-deviants (p = .041), pitch-deviants (ps = .007), and double-deviants (ps < .047). Patients with ESZ had reduced theta ITC for standards (ps < .040) and duration-deviants (ps < .030). Furthermore, patients with ESZ had reduced theta power across deviants at central electrodes (p = .013). MMN group deficits were not fully accounted for by theta ITC and power, and neither were theta ITC group deficits fully accounted for by MMN. Group differences in theta total power were no longer significant after covarying for MMN. CONCLUSIONS: Patients with ESZ showed reduced MMN and theta total power for all deviant types. Theta ITC showed a relatively specific reduction for duration-deviants. Although MMN and theta ITC were correlated in ESZ, covarying for one did not fully account for deficits in the other, raising the possibility of their sensitivity to dissociable pathophysiological processes.
Assuntos
Esquizofrenia , Humanos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Potenciais Evocados , EletroencefalografiaRESUMO
Resting-state functional network connectivity (rsFNC) has shown utility for identifying characteristic functional brain patterns in individuals with psychiatric and mood disorders, providing a promising avenue for biomarker development. However, several factors have precluded widespread clinical adoption of rsFNC diagnostics, namely a lack of standardized approaches for capturing comparable and reproducible imaging markers across individuals, as well as the disagreement on the amount of data required to robustly detect intrinsic connectivity networks (ICNs) and diagnostically relevant patterns of rsFNC at the individual subject level. Recently, spatially constrained independent component analysis (scICA) has been proposed as an automated method for extracting ICNs standardized to a chosen network template while still preserving individual variation. Leveraging the scICA methodology, which solves the former challenge of standardized neuroimaging markers, we investigate the latter challenge of identifying a minimally sufficient data length for clinical applications of resting-state fMRI (rsfMRI). Using a dataset containing rsfMRI scans of individuals with schizophrenia and controls (M = 310) as well as simulated rsfMRI, we evaluated the robustness of ICN and rsFNC estimates at both the subject- and group-level, as well as the performance of diagnostic classification, with respect to the length of the rsfMRI time course. We found individual estimates of ICNs and rsFNC from the full-length (5 min) reference time course were sufficiently approximated with just 3-3.5 min of data (r = 0.85, 0.88, respectively), and significant differences in group-average rsFNC could be sufficiently approximated with even less data, just 2 min (r = 0.86). These results from the shorter clinical data were largely consistent with the results from validation experiments using longer time series from both simulated (30 min) and real-world (14 min) datasets, in which estimates of subject-level FNC were reliably estimated with 3-5 min of data. Moreover, in the real-world data we found rsFNC and ICN estimates generated across the full range of data lengths (0.5-14 min) more reliably matched those generated from the first 5 min of scan time than those generated from the last 5 min, suggesting increased influence of "late scan" noise factors such as fatigue or drowsiness may limit the reliability of FNC from data collected after 10+ min of scan time, further supporting the notion of shorter scans. Lastly, a diagnostic classification model trained on just 2 min of data retained 97%-98% classification accuracy relative to that of the full-length reference model. Our results suggest that, when decomposed with scICA, rsfMRI scans of just 2-5 min show good clinical utility without significant loss of individual FNC information of longer scan lengths.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Neuroimagem , Transtornos do Humor , Mapeamento Encefálico/métodosRESUMO
This study examined associations between resting-state amplitude of low frequency fluctuations (ALFF) and negative symptoms represented by total scores, second-order dimension (motivation and pleasure, expressivity), and first-order domain (anhedonia, avolition, asociality, alogia, blunted affect) factor scores in schizophrenia (n = 57). Total negative symptom scores showed positive associations with ALFF in temporal and frontal brain regions. Negative symptom domain scores showed predominantly stronger associations with regional ALFF compared to total scores, suggesting domain scores may better map to neural signatures than total scores. Improving our understanding of the neuropathology underlying negative symptoms may aid in addressing this unmet therapeutic need in schizophrenia.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Anedonia , Encéfalo/diagnóstico por imagem , Transtornos do Humor , MotivaçãoRESUMO
BACKGROUND: Individual variation in brain aging trajectories is linked with several physical and mental health outcomes. Greater stress levels, worry, and rumination correspond with advanced brain age, while other individual characteristics, like mindfulness, may be protective of brain health. Multiple lines of evidence point to advanced brain aging in schizophrenia (i.e., neural age estimate > chronological age). Whether psychological dimensions such as mindfulness, rumination, and perceived stress contribute to brain aging in schizophrenia is unknown. METHODS: We estimated brain age from high-resolution anatomical scans in 54 healthy controls (HC) and 52 individuals with schizophrenia (SZ) and computed the brain predicted age difference (BrainAGE-diff), i.e., the delta between estimated brain age and chronological age. Emotional well-being summary scores were empirically derived to reflect individual differences in trait mindfulness, rumination, and perceived stress. Core analyses evaluated relationships between BrainAGE-diff and emotional well-being, testing for slopes differences across groups. RESULTS: HC showed higher emotional well-being (greater mindfulness and less rumination/stress), relative to SZ. We observed a significant group difference in the relationship between BrainAge-diff and emotional well-being, explained by BrainAGE-diff negatively correlating with emotional well-being scores in SZ, and not in HC. That is, SZ with younger appearing brains (predicted age < chronological age) had emotional summary scores that were more like HC, a relationship that endured after accounting for several demographic and clinical variables. CONCLUSIONS: These data reveal clinically relevant aspects of brain age heterogeneity among SZ and point to case-control differences in the relationship between advanced brain aging and emotional well-being.
Assuntos
Atenção Plena , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Envelhecimento , EmoçõesRESUMO
Background. The auditory steady state response (ASSR) is generated in bilateral auditory cortex and is the most used electroencephalographic (EEG) or magnetoencephalographic measure of gamma band abnormalities in schizophrenia. While the finding of reduced 40-Hz ASSR power and phase consistency in schizophrenia have been replicated many times, the 40-Hz ASSR phase locking angle (PLA), which assesses oscillation latency or phase delay, has rarely been examined. Furthermore, whether 40-Hz ASSR phase delay in schizophrenia is lateralized or common to left and right auditory cortical generators is unknown. Methods. Previously analyzed EEG data recorded from 24 schizophrenia patients and 24 healthy controls presented with 20-, 30-, and 40-Hz click trains to elicit ASSRs were re-analyzed to assess PLA in source space. Dipole moments in the right and left hemisphere were used to assess both frequency and hemisphere specificity of ASSR phase delay in schizophrenia. Results. Schizophrenia patients exhibited significantly reduced (ie, phase delayed) 40-Hz PLA in the left, but not the right, hemisphere, but their 20- and 30-Hz PLA values were normal. This left-lateralized 40-Hz phase delay was unrelated to symptoms or to previously reported left-lateralized PLF reductions in the schizophrenia patients. Conclusions. Consistent with sensor-based studies, the 40-Hz ASSR source-localized to left, but not right, auditory cortex was phase delayed in schizophrenia. Consistent with prior studies showing left temporal lobe volume deficits in schizophrenia, our findings suggest sluggish entrainment to 40-Hz auditory stimulation specific to left auditory cortex that are distinct from well-established deficits in gamma ASSR power and phase synchrony.