Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 735302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819937

RESUMO

Carex subgenus Psyllophorae is an engaging study group due to its early diversification compared to most Carex lineages, and its remarkable disjunct distribution in four continents corresponding to three independent sections: sect. Psyllophorae in Western Palearctic, sect. Schoenoxiphium in Afrotropical region, and sect. Junciformes in South America (SA) and SW Pacific. The latter section is mainly distributed in Patagonia and the Andes, where it is one of the few Carex groups with a significant in situ diversification. We assess the role of historical geo-climatic events in the evolutionary history of the group, particularly intercontinental colonization events and diversification processes, with an emphasis on SA. We performed an integrative study using phylogenetic (four DNA regions), divergence times, diversification rates, biogeographic reconstruction, and bioclimatic niche evolution analyses. The crown age of subg. Psyllophorae (early Miocene) supports this lineage as one of the oldest within Carex. The diversification rate probably decreased over time in the whole subgenus. Geography seems to have played a primary role in the diversification of subg. Psyllophorae. Inferred divergence times imply a diversification scenario away from primary Gondwanan vicariance hypotheses and suggest long-distance dispersal-mediated allopatric diversification. Section Junciformes remained in Northern Patagonia since its divergence until Plio-Pleistocene glaciations. Andean orogeny appears to have acted as a northward corridor, which contrasts with the general pattern of North-to-South migration for temperate-adapted organisms. A striking niche conservatism characterizes the evolution of this section. Colonization of the SW Pacific took place on a single long-distance dispersal event from SA. The little ecological changes involved in the trans-Pacific disjunction imply the preadaptation of the group prior to the colonization of the SW Pacific. The high species number of the section results from simple accumulation of morphological changes (disparification), rather than shifts in ecological niche related to increased diversification rates (radiation).

2.
Biology (Basel) ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34681100

RESUMO

The contrasting evolutionary histories of endemic versus related cosmopolitan species provide avenues to understand the spatial drivers and limitations of biodiversity. Here, we investigated the evolutionary history of three New Zealand endemic Deschampsia species, and how they are related to cosmopolitan D. cespitosa. We used RADseq to test species delimitations, infer a dated species tree, and investigate gene flow patterns between the New Zealand endemics and the D. cespitosa populations of New Zealand, Australia and Korea. Whole plastid DNA analysis was performed on a larger worldwide sampling. Morphometrics of selected characters were applied to New Zealand sampling. Our RADseq review of over 55 Mbp showed the endemics as genetically well-defined from each other. Their last common ancestor with D. cespitosa lived during the last ten MY. The New Zealand D. cespitosa appears in a clade with Australian and Korean samples. Whole plastid DNA analysis revealed the endemics as members of a southern hemisphere clade, excluding the extant D. cespitosa of New Zealand. Both data provided strong evidence for hybridization between D. cespitosa and D. chapmanii. Our findings provide evidence for at least two migration events of the genus Deschampsia to New Zealand and hybridization between D. cespitosa and endemic taxa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA