Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Sci Nutr ; 72(1): 37-44, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32449407

RESUMO

We recently showed that the treatment with Resveratrol (RES) contrasts the effects of ageing on the skeletal muscle (SKM), reduces the appearance of tubular aggregates (TAs), and improves the fatigue resistance. Since fatigue resistance depends on the SKM capillary network, and RES has been described to improve vascularisation, we analysed the SKM capillarization in naturally ageing C57BL/6J male mice, fed with 0.04% RES in the diet for 6 months, which showed a better fatigue resistance in a previous work. Our data show an inverse correlation between the number of capillaries per fibre (CAF) and TAs in both control and treated type IIB fibres, and an increase of CAF in ageing SKM upon RES-treatment. The present work suggests that capillarization is one of the determinants of the development of TAs and fatigue resistance, and that RES can be considered a good candidate to counteract capillary rarefaction in the SKM tissue.


Assuntos
Envelhecimento/efeitos dos fármacos , Capilares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Capilares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Exp Gerontol ; 111: 170-179, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30036632

RESUMO

Resveratrol (RES) is a polyphenolic compound found in grapes, peanuts, and in some berries. RES has been reported to exhibit antioxidant, anti-inflammatory, anti-proliferative properties, and to target mitochondrial-related pathways in mammalian cells and animal models. Therefore, RES is currently advised as supplement in the diet of elderly individuals. Although it is hypothesized that some of RES beneficial actions likely arise from its action on the skeletal muscle, the investigation of RES effects on this tissue remains still elusive. This study reports the effects of a 0,04% RES-supplemented diet for six months, on the skeletal muscle properties of C57/BL6 aging mice. The analysis of the morphology, protein expression, and functional-mechanical properties of selected skeletal muscles in treated compared to control mice, revealed that treated animals presented less tubular aggregates and a better resistance to fatigue in an ex-vivo contraction test, suggesting RES as a good candidate to reduce age-related alterations in muscle.


Assuntos
Envelhecimento/fisiologia , Antioxidantes/farmacologia , Fadiga/tratamento farmacológico , Músculo Esquelético/metabolismo , Resveratrol/farmacologia , Animais , Suplementos Nutricionais , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
3.
J Biol Chem ; 286(51): 43717-43725, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22020936

RESUMO

Junctophilins (JPs) anchor the endo/sarcoplasmic reticulum to the plasma membrane, thus contributing to the assembly of junctional membrane complexes in striated muscles and neurons. Recent studies have shown that JPs may be also involved in regulating Ca2+ homeostasis. Here, we report that in skeletal muscle, JP1 and JP2 are part of a complex that, in addition to ryanodine receptor 1 (RyR1), includes caveolin 3 and the dihydropyridine receptor (DHPR). The interaction between JPs and DHPR was mediated by a region encompassing amino acids 230-369 and amino acids 216-399 in JP1 and JP2, respectively. Immunofluorescence studies revealed that the pattern of DHPR and RyR signals in C2C12 cells knocked down for JP1 and JP2 was rather diffused and characterized by smaller puncta in contrast to that observed in control cells. Functional experiments revealed that down-regulation of JPs in differentiated C2C12 cells resulted in a reduction of intramembrane charge movement and the L-type Ca2+ current accompanied by a reduced number of DHPRs at the plasma membrane, whereas there was no substantial alteration in Ca2+ release from the sterol regulatory element-binding protein. Altogether, these results suggest that JP1 and JP2 can facilitate the assembly of DHPR with other proteins of the excitation-contraction coupling machinery.


Assuntos
Canais de Cálcio Tipo L/química , Proteínas de Membrana/química , Músculo Esquelético/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Glutationa Transferase/metabolismo , Humanos , Masculino , Camundongos , Modelos Biológicos , Músculos/metabolismo , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA