Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Neurotrauma ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970424

RESUMO

Psychopathology, including depression, anxiety, and post-traumatic stress, is a significant yet inadequately addressed feature of moderate-severe traumatic brain injury (TBI). Progress in understanding and treating post-TBI psychopathology may be hindered by limitations associated with conventional diagnostic approaches, specifically the Diagnostic and Statistical Manual of Mental Disorders (DSM) and International Classification of Diseases (ICD). The Hierarchical Taxonomy of Psychopathology (HiTOP) offers a promising, transdiagnostic alternative to psychiatric classification that may more effectively capture the experiences of individuals with TBI. However, HiTOP lacks validation in the TBI population. To address this gap, we administered a comprehensive questionnaire battery, including 56 scales assessing homogeneous symptom components and maladaptive traits within HiTOP, to 410 individuals with moderate-severe TBI. We evaluated the reliability and unidimensionality of each scale and revised those with psychometric problems. Using a top-down, exploratory latent variable approach (bass-ackwards modeling), we subsequently constructed a hierarchical model of psychopathological dimensions tailored to TBI. The results showed that, relative to norms, participants with moderate-severe TBI experienced greater problems in the established HiTOP internalizing and detachment spectra, but fewer problems with thought disorder and antagonism. Fourteen of the 56 scales demonstrated psychometric problems, which often appeared reflective of the TBI experience and associated disability. The Hierarchical Taxonomy of Psychopathology Following Traumatic Brain Injury (HiTOP-TBI) model encompassed broad internalizing and externalizing spectra, splitting into seven narrower dimensions: Detachment, Dysregulated Negative Emotionality, Somatic Symptoms, Compensatory and Phobic Reactions, Self-Harm and Psychoticism, Rigid Constraint, and Harmful Substance Use. This study presents the most comprehensive empirical classification of psychopathology after TBI to date. It introduces a novel, TBI-specific transdiagnostic questionnaire battery and model, which addresses the limitations of conventional DSM and ICD diagnoses. The empirical structure of psychopathology after TBI largely aligned with the established HiTOP model (e.g., a detachment spectrum). However, these constructs need to be interpreted in relation to the unique experiences associated with TBI (e.g., considering the injury's impact on the person's social functioning). By overcoming limitations of conventional diagnostic approaches, the HiTOP-TBI model has the potential to accelerate our understanding of the causes, correlates, consequences, and treatment of psychopathology after TBI.

2.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948881

RESUMO

Decades of neuroscience research has shown that macroscale brain dynamics can be reliably decomposed into a subset of large-scale functional networks, but the specific spatial topographies of these networks and the names used to describe them can vary across studies. Such discordance has hampered interpretation and convergence of research findings across the field. To address this problem, we have developed the Network Correspondence Toolbox (NCT) to permit researchers to examine and report spatial correspondence between their novel neuroimaging results and sixteen widely used functional brain atlases, consistent with recommended reporting standards developed by the Organization for Human Brain Mapping. The atlases included in the toolbox show some topographical convergence for specific networks, such as those labeled as default or visual. Network naming varies across atlases, particularly for networks spanning frontoparietal association cortices. For this reason, quantitative comparison with multiple atlases is recommended to benchmark novel neuroimaging findings. We provide several exemplar demonstrations using the Human Connectome Project task fMRI results and UK Biobank independent component analysis maps to illustrate how researchers can use the NCT to report their own findings through quantitative evaluation against multiple published atlases. The NCT provides a convenient means for computing Dice coefficients with spin test permutations to determine the magnitude and statistical significance of correspondence among user-defined maps and existing atlas labels. The NCT also includes functionality to incorporate additional atlases in the future. The adoption of the NCT will make it easier for network neuroscience researchers to report their findings in a standardized manner, thus aiding reproducibility and facilitating comparisons between studies to produce interdisciplinary insights.

3.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38915560

RESUMO

The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.

4.
Psychiatry Res ; 337: 115966, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810536

RESUMO

Decreased white matter (WM) integrity and disturbance in fatty acid composition have been reported in individuals at ultra-high risk of psychosis (UHR). The current study is the first to investigate both WM integrity and erythrocyte membrane polyunsaturated fatty acid (PUFA) levels as potential risk biomarkers for persistent UHR status, and global functioning in UHR individuals. Forty UHR individuals were analysed at baseline for erythrocyte membrane PUFA concentrates. Tract-based spatial statistics (TBSS) was used to analyse fractional anisotropy (FA) and diffusivity measures. Measures of global functioning and psychiatric symptoms were evaluated at baseline and at 12-months. Fatty acids and WM indices did not predict functional outcomes at baseline or 12-months. Significant differences were found in FA between UHR remitters and non-remitters (individuals who no longer met UHR criteria versus those who continued to meet criteria at 12-months). Docosahexaenoic acid (DHA) was found to be a significant predictor of UHR status at 12-months, as was the interaction between the sum of ώ-3 and whole brain FA, and the interaction between the right anterior limb of the internal capsule and the sum of ώ-3. The results confirm that certain fatty acids have a unique relationship with WM integrity in UHR individuals.


Assuntos
Membrana Eritrocítica , Bainha de Mielina , Transtornos Psicóticos , Humanos , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Masculino , Feminino , Membrana Eritrocítica/metabolismo , Adulto Jovem , Adolescente , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Anisotropia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/metabolismo , Ácidos Graxos/metabolismo , Adulto , Imagem de Tensor de Difusão , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Ácidos Docosa-Hexaenoicos/metabolismo , Escalas de Graduação Psiquiátrica , Ácidos Graxos Insaturados/metabolismo
5.
Int J Eat Disord ; 57(5): 1224-1233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38425083

RESUMO

OBJECTIVE: Reward-based eating drives are putative mechanisms of uncontrolled eating implicated in obesity and disordered eating (e.g., binge eating). Uncovering the genetic and environmental contributions to reward-related eating, and their genetic correlation with BMI, could shed light on key mechanisms underlying eating and weight-related disorders. METHOD: We conducted a classical twin study to examine how much variance in uncontrolled eating phenotypes and body mass index (BMI) was explained by genetic factors, and the extent that these phenotypes shared common genetic factors. 353 monozygotic twins and 128 dizygotic twins completed the Reward-based Eating Drive 13 scale, which measures three distinct uncontrolled eating phenotypes (loss of control over eating, preoccupation with thoughts about food, and lack of satiety), and a demographic questionnaire which included height and weight for BMI calculation. We estimated additive genetic (A), common environmental (C), and unique environmental (E) factors for each phenotype, as well as their genetic correlations, with a multivariate ACE model. A common pathway model also estimated whether genetic variance in the uncontrolled eating phenotypes was better explained by a common latent uncontrolled eating factor. RESULTS: There were moderate genetic correlations between uncontrolled eating phenotypes and BMI (.26-.41). Variance from the uncontrolled eating phenotypes was also best explained by a common latent uncontrolled eating factor that was explained by additive genetic factors (52%). DISCUSSION: These results suggest that uncontrolled eating phenotypes are heritable traits that also share genetic variance with BMI. This has implications for understanding the cognitive mechanisms that underpin obesity and disordered eating. PUBLIC SIGNIFICANCE: Our study clarifies the degree to which uncontrolled eating phenotypes and BMI are influenced by shared genetics and shows that vulnerability to uncontrolled eating traits is impacted by common genetic factors.


Assuntos
Índice de Massa Corporal , Fenótipo , Humanos , Feminino , Masculino , Adulto , Comportamento Alimentar , Gêmeos Monozigóticos/genética , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Gêmeos Dizigóticos/genética , Recompensa , Pessoa de Meia-Idade , Inquéritos e Questionários , Obesidade/genética
6.
Sci Rep ; 14(1): 6902, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519624

RESUMO

Network controllability refers to the ability to steer the state of a network towards a target state by driving certain nodes, known as input nodes. This concept can be applied to brain networks for studying brain function and its relation to the structure, which has numerous practical applications. Brain network controllability involves using external signals such as electrical stimulation to drive specific brain regions and navigate the neurophysiological activity level of the brain around the state space. Although controllability is mainly theoretical, the energy required for control is critical in real-world implementations. With a focus on the structural brain networks, this study explores the impact of white matter fiber architecture on the control energy in brain networks using the theory of how input node placement affects the LCC (the longest distance between inputs and other network nodes). Initially, we use a single input node as it is theoretically possible to control brain networks with just one input. We show that highly connected brain regions that lead to lower LCCs are more energy-efficient as a single input node. However, there may still be a need for a significant amount of control energy with one input, and achieving controllability with less energy could be of interest. We identify the minimum number of input nodes required to control brain networks with smaller LCCs, demonstrating that reducing the LCC can significantly decrease the control energy in brain networks. Our results show that relying solely on highly connected nodes is not effective in controlling brain networks with lower energy by using multiple inputs because of densely interconnected brain network hubs. Instead, a combination of low and high-degree nodes is necessary.


Assuntos
Encéfalo , Substância Branca
7.
Hum Brain Mapp ; 45(4): e26640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445545

RESUMO

Voxel-based morphometry (VBM) and surface-based morphometry (SBM) are two widely used neuroimaging techniques for investigating brain anatomy. These techniques rely on statistical inferences at individual points (voxels or vertices), clusters of points, or a priori regions-of-interest. They are powerful tools for describing brain anatomy, but offer little insights into the generative processes that shape a particular set of findings. Moreover, they are restricted to a single spatial resolution scale, precluding the opportunity to distinguish anatomical variations that are expressed across multiple scales. Drawing on concepts from classical physics, here we develop an approach, called mode-based morphometry (MBM), that can describe any empirical map of anatomical variations in terms of the fundamental, resonant modes-eigenmodes-of brain anatomy, each tied to a specific spatial scale. Hence, MBM naturally yields a multiscale characterization of the empirical map, affording new opportunities for investigating the spatial frequency content of neuroanatomical variability. Using simulated and empirical data, we show that the validity and reliability of MBM are either comparable or superior to classical vertex-based SBM for capturing differences in cortical thickness maps between two experimental groups. Our approach thus offers a robust, accurate, and informative method for characterizing empirical maps of neuroanatomical variability that can be directly linked to a generative physical process.


Assuntos
Encéfalo , Neuroanatomia , Humanos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Cabeça , Neuroimagem
8.
Brain Commun ; 6(1): fcae015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347944

RESUMO

Psychosis has often been linked to abnormal cortical asymmetry, but prior results have been inconsistent. Here, we applied a novel spectral shape analysis to characterize cortical shape asymmetries in patients with early psychosis across different spatial scales. We used the Human Connectome Project for Early Psychosis dataset (aged 16-35), comprising 56 healthy controls (37 males, 19 females) and 112 patients with early psychosis (68 males, 44 females). We quantified shape variations of each hemisphere over different spatial frequencies and applied a general linear model to compare differences between healthy controls and patients with early psychosis. We further used canonical correlation analysis to examine associations between shape asymmetries and clinical symptoms. Cortical shape asymmetries, spanning wavelengths from about 22 to 75 mm, were significantly different between healthy controls and patients with early psychosis (Cohen's d = 0.28-0.51), with patients showing greater asymmetry in cortical shape than controls. A single canonical mode linked the asymmetry measures to symptoms (canonical correlation analysis r = 0.45), such that higher cortical asymmetry was correlated with more severe excitement symptoms and less severe emotional distress. Significant group differences in the asymmetries of traditional morphological measures of cortical thickness, surface area, and gyrification, at either global or regional levels, were not identified. Cortical shape asymmetries are more sensitive than other morphological asymmetries in capturing abnormalities in patients with early psychosis. These abnormalities are expressed at coarse spatial scales and are correlated with specific symptom domains.

9.
Biol Psychiatry ; 95(5): 453-464, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393046

RESUMO

BACKGROUND: The transition from childhood to adolescence is characterized by enhanced neural plasticity and a consequent susceptibility to both beneficial and adverse aspects of one's milieu. METHODS: To understand the implications of the interplay between protective and risk-enhancing factors, we analyzed longitudinal data from the Adolescent Brain Cognitive Development (ABCD) Study (n = 834; 394 female). We probed the maturational correlates of positive lifestyle variables (friendships, parental warmth, school engagement, physical exercise, healthy nutrition) and genetic vulnerability to neuropsychiatric disorders (major depressive disorder, Alzheimer's disease, anxiety disorders, bipolar disorder, schizophrenia) and sought to further elucidate their implications for psychological well-being. RESULTS: Genetic risk factors and lifestyle buffers showed divergent relationships with later attentional and interpersonal problems. These effects were mediated by distinguishable functional neurodevelopmental deviations spanning the limbic, default mode, visual, and control systems. More specifically, greater genetic vulnerability was associated with alterations in the normative maturation of areas rich in dopamine (D2), glutamate, and serotonin receptors and of areas with stronger expression of astrocytic and microglial genes, a molecular signature implicated in the brain disorders discussed here. Greater availability of lifestyle buffers predicted deviations in the normative functional development of higher density GABAergic (gamma-aminobutyric acidergic) receptor regions. The two profiles of neurodevelopmental alterations showed complementary roles in protection against psychopathology, which varied with environmental stress levels. CONCLUSIONS: Our results underscore the importance of educational involvement and healthy nutrition in attenuating the neurodevelopmental sequelae of genetic risk factors. They also underscore the importance of characterizing early-life biomarkers associated with adult-onset pathologies.


Assuntos
Transtorno Depressivo Maior , Adulto , Adolescente , Humanos , Feminino , Criança , Transtorno Depressivo Maior/genética , Encéfalo , Fatores de Risco , Envelhecimento , Estilo de Vida
10.
Netw Neurosci ; 7(4): 1326-1350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144690

RESUMO

Recent years have seen a surge in the use of diffusion MRI to map connectomes in humans, paralleled by a similar increase in processing and analysis choices. Yet these different steps and their effects are rarely compared systematically. Here, in a healthy young adult population (n = 294), we characterized the impact of a range of analysis pipelines on one widely studied property of the human connectome: its degree distribution. We evaluated the effects of 40 pipelines (comparing common choices of parcellation, streamline seeding, tractography algorithm, and streamline propagation constraint) and 44 group-representative connectome reconstruction schemes on highly connected hub regions. We found that hub location is highly variable between pipelines. The choice of parcellation has a major influence on hub architecture, and hub connectivity is highly correlated with regional surface area in most of the assessed pipelines (ρ > 0.70 in 69% of the pipelines), particularly when using weighted networks. Overall, our results demonstrate the need for prudent decision-making when processing diffusion MRI data, and for carefully considering how different processing choices can influence connectome organization.

11.
Netw Neurosci ; 7(4): 1228-1247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144692

RESUMO

Functional magnetic resonance imaging (fMRI) is widely used to investigate functional coupling (FC) disturbances in a range of clinical disorders. Most analyses performed to date have used group-based parcellations for defining regions of interest (ROIs), in which a single parcellation is applied to each brain. This approach neglects individual differences in brain functional organization and may inaccurately delineate the true borders of functional regions. These inaccuracies could inflate or underestimate group differences in case-control analyses. We investigated how individual differences in brain organization influence group comparisons of FC using psychosis as a case study, drawing on fMRI data in 121 early psychosis patients and 57 controls. We defined FC networks using either a group-based parcellation or an individually tailored variant of the same parcellation. Individualized parcellations yielded more functionally homogeneous ROIs than did group-based parcellations. At the level of individual connections, case-control FC differences were widespread, but the group-based parcellation identified approximately 7.7% more connections as dysfunctional than the individualized parcellation. When considering differences at the level of functional networks, the results from both parcellations converged. Our results suggest that a substantial fraction of dysconnectivity previously observed in psychosis may be driven by the parcellation method, rather than by a pathophysiological process related to psychosis.

12.
Biol Psychiatry Glob Open Sci ; 3(4): 1053-1061, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881541

RESUMO

Background: Disrupted motivational control is a common-but poorly treated-feature of psychiatric disorders, arising via aberrant mesolimbic dopaminergic signaling. GPR88 is an orphan G protein-coupled receptor that is highly expressed in the striatum and therefore well placed to modulate disrupted signaling. While the phenotype of Gpr88 knockout mice suggests a role in motivational pathways, it is unclear whether GPR88 is involved in reward valuation and/or effort-based decision making in a sex-dependent manner and whether this involves altered dopamine function. Methods: In male and female Gpr88 knockout mice, we used touchscreen-based progressive ratio, with and without reward devaluation, and effort-related choice tasks to assess motivation and cost/benefit decision making, respectively. To explore whether these motivational behaviors were related to alterations in the striatal dopamine system, we quantified expression of dopamine-related genes and/or proteins and used [18F]DOPA positron emission tomography and GTPγ[35S] binding to assess presynaptic and postsynaptic dopamine function, respectively. Results: We showed that male and female Gpr88 knockout mice displayed greater motivational drive than wild-type mice, which was maintained following reward devaluation. Furthermore, we showed that cost/benefit decision making was impaired in male, but not female, Gpr88 knockout mice. Surprisingly, we found that Gpr88 deletion had no effect on striatal dopamine by any of the measures assessed. Conclusions: Our results highlight that GPR88 regulates motivational control but that disruption of such behaviors following Gpr88 deletion occurs independently of gross perturbations to striatal dopamine at a gene, protein, or functional level. This work provides further insights into GPR88 as a drug target for motivational disorders.

13.
Netw Neurosci ; 7(3): 864-905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781138

RESUMO

Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37683727

RESUMO

BACKGROUND: The cerebral cortex is organized hierarchically along an axis that spans unimodal sensorimotor to transmodal association areas. This hierarchy is often characterized using low-dimensional embeddings, termed gradients, of interregional functional coupling estimates measured with resting-state functional magnetic resonance imaging. Such analyses may offer insights into the pathophysiology of schizophrenia, which has been frequently linked to dysfunctional interactions between association and sensorimotor areas. METHODS: To examine disruptions of hierarchical cortical function across distinct stages of psychosis, we applied diffusion map embedding to 2 independent functional magnetic resonance imaging datasets: one comprising 114 patients with early psychosis and 48 control participants, and the other comprising 50 patients with established schizophrenia and 121 control participants. Then, we analyzed the primary sensorimotor-to-association and secondary visual-to-sensorimotor gradients of each participant in both datasets. RESULTS: There were no significant differences in regional gradient scores between patients with early psychosis and control participants. Patients with established schizophrenia showed significant differences in the secondary, but not primary, gradient compared with control participants. Gradient differences in schizophrenia were characterized by lower within-network dispersion in the dorsal attention (false discovery rate [FDR]-corrected p [pFDR] < .001), visual (pFDR = .003), frontoparietal (pFDR = .018), and limbic (pFDR = .020) networks and lower between-network dispersion between the visual network and other networks (pFDR < .001). CONCLUSIONS: These findings indicate that differences in cortical hierarchical function occur along the secondary visual-to-sensorimotor axis rather than the primary sensorimotor-to-association axis as previously thought. The absence of differences in early psychosis suggests that visual-sensorimotor abnormalities may emerge as the illness progresses.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Córtex Sensório-Motor , Humanos , Imageamento por Ressonância Magnética/métodos
15.
JAMA Psychiatry ; 80(12): 1246-1257, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728918

RESUMO

Importance: Psychotic illness is associated with anatomically distributed gray matter reductions that can worsen with illness progression, but the mechanisms underlying the specific spatial patterning of these changes is unknown. Objective: To test the hypothesis that brain network architecture constrains cross-sectional and longitudinal gray matter alterations across different stages of psychotic illness and to identify whether certain brain regions act as putative epicenters from which volume loss spreads. Design, Settings, and Participants: This case-control study included 534 individuals from 4 cohorts, spanning early and late stages of psychotic illness. Early-stage cohorts included patients with antipsychotic-naive first-episode psychosis (n = 59) and a group of patients receiving medications within 3 years of psychosis onset (n = 121). Late-stage cohorts comprised 2 independent samples of people with established schizophrenia (n = 136). Each patient group had a corresponding matched control group (n = 218). A sample of healthy adults (n = 356) was used to derive representative structural and functional brain networks for modeling of network-based spreading processes. Longitudinal illness-related and antipsychotic-related gray matter changes over 3 and 12 months were examined using a triple-blind randomized placebo-control magnetic resonance imaging study of the antipsychotic-naive patients. All data were collected between April 29, 2008, and January 15, 2020, and analyses were performed between March 1, 2021, and January 14, 2023. Main Outcomes and Measures: Coordinated deformation models were used to estimate the extent of gray matter volume (GMV) change in each of 332 parcellated areas by the volume changes observed in areas to which they were structurally or functionally coupled. To identify putative epicenters of volume loss, a network diffusion model was used to simulate the spread of pathology from different seed regions. Correlations between estimated and empirical spatial patterns of GMV alterations were used to quantify model performance. Results: Of 534 included individuals, 354 (66.3%) were men, and the mean (SD) age was 28.4 (7.4) years. In both early and late stages of illness, spatial patterns of cross-sectional volume differences between patients and controls were more accurately estimated by coordinated deformation models constrained by structural, rather than functional, network architecture (r range, >0.46 to <0.57; P < .01). The same model also robustly estimated longitudinal volume changes related to illness (r ≥ 0.52; P < .001) and antipsychotic exposure (r ≥ 0.50; P < .004). Network diffusion modeling consistently identified, across all 4 data sets, the anterior hippocampus as a putative epicenter of pathological spread in psychosis. Epicenters of longitudinal GMV loss were apparent in posterior cortex early in the illness and shifted to the prefrontal cortex with illness progression. Conclusion and Relevance: These findings highlight a central role for white matter fibers as conduits for the spread of pathology across different stages of psychotic illness, mirroring findings reported in neurodegenerative conditions. The structural connectome thus represents a fundamental constraint on brain changes in psychosis, regardless of whether these changes are caused by illness or medication. Moreover, the anterior hippocampus represents a putative epicenter of early brain pathology from which dysfunction may spread to affect connected areas.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Masculino , Adulto , Humanos , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Antipsicóticos/uso terapêutico , Estudos Transversais , Estudos de Casos e Controles , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
16.
Nat Neurosci ; 26(9): 1613-1629, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580620

RESUMO

The substantial individual heterogeneity that characterizes people with mental illness is often ignored by classical case-control research, which relies on group mean comparisons. Here we present a comprehensive, multiscale characterization of the heterogeneity of gray matter volume (GMV) differences in 1,294 cases diagnosed with one of six conditions (attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, depression, obsessive-compulsive disorder and schizophrenia) and 1,465 matched controls. Normative models indicated that person-specific deviations from population expectations for regional GMV were highly heterogeneous, affecting the same area in <7% of people with the same diagnosis. However, these deviations were embedded within common functional circuits and networks in up to 56% of cases. The salience-ventral attention system was implicated transdiagnostically, with other systems selectively involved in depression, bipolar disorder, schizophrenia and attention-deficit/hyperactivity disorder. Phenotypic differences between cases assigned the same diagnosis may thus arise from the heterogeneous localization of specific regional deviations, whereas phenotypic similarities may be attributable to the dysfunction of common functional circuits and networks.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Obsessivo-Compulsivo , Humanos , Imageamento por Ressonância Magnética , Substância Cinzenta , Encéfalo
17.
Mol Psychiatry ; 28(10): 4175-4184, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37500827

RESUMO

Deficits in effective executive function, including inhibitory control are associated with risk for a number of psychiatric disorders and significantly impact everyday functioning. These complex traits have been proposed to serve as endophenotypes, however, their genetic architecture is not yet well understood. To identify the common genetic variation associated with inhibitory control in the general population we performed the first trans-ancestry genome wide association study (GWAS) combining data across 8 sites and four ancestries (N = 14,877) using cognitive traits derived from the stop-signal task, namely - go reaction time (GoRT), go reaction time variability (GoRT SD) and stop signal reaction time (SSRT). Although we did not identify genome wide significant associations for any of the three traits, GoRT SD and SSRT demonstrated significant and similar SNP heritability of 8.2%, indicative of an influence of genetic factors. Power analyses demonstrated that the number of common causal variants contributing to the heritability of these phenotypes is relatively high and larger sample sizes are necessary to robustly identify associations. In Europeans, the polygenic risk for ADHD was significantly associated with GoRT SD and the polygenic risk for schizophrenia was associated with GoRT, while in East Asians polygenic risk for schizophrenia was associated with SSRT. These results support the potential of executive function measures as endophenotypes of neuropsychiatric disorders. Together these findings provide the first evidence indicating the influence of common genetic variation in the genetic architecture of inhibitory control quantified using objective behavioural traits derived from the stop-signal task.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Estudo de Associação Genômica Ampla/métodos , Esquizofrenia/genética , Função Executiva , Herança Multifatorial/genética , Endofenótipos , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença/genética
18.
Transl Psychiatry ; 13(1): 199, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301832

RESUMO

The drivers of cognitive change following first-episode psychosis remain poorly understood. Evidence regarding the role of antipsychotic medication is primarily based on naturalistic studies or clinical trials without a placebo arm, making it difficult to disentangle illness from medication effects. A secondary analysis of a randomised, triple-blind, placebo-controlled trial, where antipsychotic-naive patients with first-episode psychotic disorder were allocated to receive risperidone/paliperidone or matched placebo plus intensive psychosocial therapy for 6 months was conducted. A healthy control group was also recruited. A cognitive battery was administered at baseline and 6 months. Intention-to-treat analysis involved 76 patients (antipsychotic medication group: 37; 18.6Mage [2.9] years; 21 women; placebo group: 39; 18.3Mage [2.7]; 22 women); and 42 healthy controls (19.2Mage [3.0] years; 28 women). Cognitive performance predominantly remained stable (working memory, verbal fluency) or improved (attention, processing speed, cognitive control), with no group-by-time interaction evident. However, a significant group-by-time interaction was observed for immediate recall (p = 0.023), verbal learning (p = 0.024) and delayed recall (p = 0.005). The medication group declined whereas the placebo group improved on each measure (immediate recall: p = 0.024; ηp2 = 0.062; verbal learning: p = 0.015; ηp2 = 0.072 both medium effects; delayed recall: p = 0.001; ηp2 = 0.123 large effect). The rate of change for the placebo and healthy control groups was similar. Per protocol analysis (placebo n = 16, medication n = 11) produced similar findings. Risperidone/paliperidone may worsen verbal learning and memory in the early months of psychosis treatment. Replication of this finding and examination of various antipsychotic agents are needed in confirmatory trials. Antipsychotic effects should be considered in longitudinal studies of cognition in psychosis.Trial registration: Australian New Zealand Clinical Trials Registry ( http://www.anzctr.org.au/ ; ACTRN12607000608460).


Assuntos
Antipsicóticos , Transtornos Psicóticos , Humanos , Feminino , Risperidona/efeitos adversos , Antipsicóticos/efeitos adversos , Palmitato de Paliperidona/uso terapêutico , Austrália , Transtornos Psicóticos/psicologia , Cognição
19.
Nature ; 618(7965): 566-574, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258669

RESUMO

The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Axônios/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurônios/fisiologia
20.
Proc Natl Acad Sci U S A ; 120(20): e2218782120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155867

RESUMO

Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.


Assuntos
Encéfalo , Equidade de Gênero , Masculino , Adulto , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA