Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 810: 151247, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710429

RESUMO

The formation of hydrogen sulfide (H2S) during anaerobic digestion (AD) imposes constraints on the valorisation of biogas. So far, inorganic sulfur compounds -mainly sulfate - have been considered as the main contributors to H2S formation, while the contribution of organic sulfur compounds is mostly neglected. This study investigates the fate of organic and inorganic sulfur compounds during two-stage anaerobic digestion with intermediate thermal hydrolysis for treatment of primary and secondary sludge in a WWTP treating domestic wastewater. The results of a seven-week monitoring campaign showed an overall decrease of organic sulfur compounds in both stages of anaerobic digestion. Further fractionation of organic sulfur revealed a high conversion of the particulate organic fraction during the first digestion stage and of the soluble organic fraction during the second digestion stage. The decrease of soluble organic sulfur during the second digestion stage was attributed to the solubilisation and hydrolysis of sulfur-containing organic compounds during thermal hydrolysis. In both digestion stages, more organic sulfur was taken up than particulate inorganic sulfur (metal sulfide) was produced, indicating the formation of other reduced sulfur forms (e.g. H2S). Further batch experiments confirmed the role of organic sulfur uptake in the formation of H2S during anaerobic digestion as sulfate reduction only partly explained the total sulfide formed (H2S in biogas and precipitated FeS). Overall, the conversion of organic sulfur was demonstrated to play a major role in H2S formation (and thus the biogas quality), especially in case of thermal hydrolysis pretreatment.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Hidrólise , Enxofre
2.
Sci Total Environ ; 801: 149530, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34418627

RESUMO

Even though sulfur compounds and their transformations may strongly affect wastewater treatment processes, their importance in water resource recovery facilities (WRRF) operation remains quite unexplored, notably when it comes to full-scale and plant-wide characterization. This contribution presents a first-of-a-kind, plant-wide quantification of total sulfur mass flows for all water and sludge streams in a full-scale WRRF. Because of its important impact on (post-treatment) process operation, the gaseous emission of sulfur as hydrogen sulfide (H2S) was also included, thus enabling a comprehensive evaluation of sulfur flows. Data availability and quality were optimized by experimental design and data reconciliation, which were applied for the first time to total sulfur flows. Total sulfur flows were successfully balanced over individual process treatment units as well as the plant-wide system with only minor variation to their original values, confirming that total sulfur is a conservative quantity. The two-stage anaerobic digestion with intermediate thermal hydrolysis led to a decreased sulfur content of dewatered sludge (by 36%). Higher (gaseous) H2S emissions were observed in the second-stage digester (42% of total emission) than in the first one, suggesting an impact of thermal treatment on the production of H2S. While the majority of sulfur mass flow from the influent left the plant through the treated effluent (> 95%), the sulfur discharge through dewatered sludge and gaseous emissions are critical. The latter are indeed responsible for odour nuisance, lower biogas quality, SO2 emissions upon sludge combustion and corrosion effects.


Assuntos
Eliminação de Resíduos Líquidos , Recursos Hídricos , Esgotos , Enxofre , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA