Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Immunol ; 208(3): 603-617, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022277

RESUMO

MicroRNAs (miRNAs/miRs) are small, endogenous noncoding RNAs that are important post-transcriptional regulators with clear roles in the development of the immune system and immune responses. Using miRNA microarray profiling, we characterized the expression profile of naive and in vivo generated murine effector antiviral CD8+ T cells. We observed that out of 362 measurable mature miRNAs, 120 were differentially expressed by at least 2-fold in influenza-specific effector CD8+ CTLs compared with naive CD8+ T cells. One miRNA found to be highly downregulated on both strands in effector CTLs was miR-139. Because previous studies have indicated a role for miR-139-mediated regulation of CTL effector responses, we hypothesized that deletion of miR-139 would enhance antiviral CTL responses during influenza virus infection. We generated miR-139-/- mice or overexpressed miR-139 in T cells to assess the functional contribution of miR-139 expression in CD8+ T cell responses. Our study demonstrates that the development of naive T cells and generation or differentiation of effector or memory CD8+ T cell responses to influenza virus infection are not impacted by miR-139 deficiency or overexpression; yet, miR-139-/- CD8+ T cells are outcompeted by wild-type CD8+ T cells in a competition setting and demonstrate reduced responses to Listeria monocytogenes Using an in vitro model of T cell exhaustion, we confirmed that miR-139 expression similarly does not impact the development of T cell exhaustion. We conclude that despite significant downregulation of miR-139 following in vivo and in vitro activation, miR-139 expression is dispensable for influenza-specific CTL responses.


Assuntos
Vírus da Influenza A/imunologia , Listeria monocytogenes/imunologia , MicroRNAs/genética , Infecções por Orthomyxoviridae/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Regulação para Baixo/genética , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia
2.
Cell Mol Gastroenterol Hepatol ; 13(4): 1276-1296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34954189

RESUMO

BACKGROUND & AIMS: Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic ß-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions. Here, we examined a mechanism of GUCY2C ligand transcriptional silencing by ß-catenin/TCF signaling. METHODS: We performed RNA sequencing analysis of 4 unique conditional human colon cancer cell models of ß-catenin/TCF signaling to map the core Wnt-transcriptional program. We then performed a comparative analysis of orthogonal approaches, including luciferase reporters, chromatin immunoprecipitation sequencing, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) knockout, and CRISPR epigenome editing, which were cross-validated with human tissue chromatin immunoprecipitation sequencing datasets, to identify functional gene enhancers mediating GUCY2C ligand loss. RESULTS: RNA sequencing analyses reveal the GUCY2C hormones as 2 of the most sensitive targets of ß-catenin/TCF signaling, reflecting transcriptional repression. The GUCY2C hormones share an insulated genomic locus containing a novel locus control region upstream of the guanylin promoter that mediates the coordinated silencing of both genes. Targeting this region with CRISPR epigenome editing reconstituted GUCY2C ligand expression, overcoming gene inactivation by mutant ß-catenin/TCF signaling. CONCLUSIONS: These studies reveal DNA elements regulating corepression of GUCY2C ligand transcription by ß-catenin/TCF signaling, reflecting a novel pathophysiological step in tumorigenesis. They offer unique genomic strategies that could reestablish hormone expression in the context of canonical oncogenic mutations to reconstitute the GUCY2C axis and oppose transformation.


Assuntos
Neoplasias Colorretais , beta Catenina , Carcinogênese/genética , Cateninas/genética , Cateninas/metabolismo , Neoplasias Colorretais/patologia , Humanos , Ligantes , Região de Controle de Locus Gênico , Receptores de Enterotoxina/genética , Receptores de Enterotoxina/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
J Immunol ; 204(8): 2076-2087, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169842

RESUMO

Dysregulated Th17 cell differentiation is associated with autoimmune diseases such as multiple sclerosis, which has no curative treatment. Understanding the molecular mechanisms of regulating Th17 cell differentiation will help find a novel therapeutic target for treating Th17 cell-mediated diseases. In this study, we investigated the cell-intrinsic processes by which RNA-binding protein HuR orchestrates Th17 cell fate decisions by posttranscriptionally regulating transcription factors Irf4 and Runx1 and receptor Il12rb1 expression, in turn promoting Th17 cell and Th1-like Th17 cell differentiation in C57BL/6J mice. Knockout of HuR altered the transcriptome of Th17 cells characterized by reducing the levels of RORγt, IRF4, RUNX1, and T-bet, thereby reducing the number of pathogenic IL-17+IFN-γ+CD4+ T cells in the spleen during experimental autoimmune encephalomyelitis. In keeping with the fact that HuR increased the abundance of adhesion molecule VLA-4 on Th17 cells, knockout of HuR impaired splenic Th17 cell migration to the CNS and abolished the disease. Accordingly, targeting HuR by its inhibitor DHTS inhibited splenic Th17 cell differentiation and reduced experimental autoimmune encephalomyelitis severity. In sum, we uncovered the molecular mechanism of HuR regulating Th17 cell functions, underscoring the therapeutic value of HuR for treatment of autoimmune neuroinflammation.


Assuntos
Diferenciação Celular , Proteína Semelhante a ELAV 1/imunologia , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/deficiência , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Furanos , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fenantrenos/farmacologia , Quinonas , Células Th17/efeitos dos fármacos
5.
Cancer Discov ; 8(5): 568-581, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496664

RESUMO

Targeting cyclin-dependent kinases 4/6 (CDK4/6) represents a therapeutic option in combination with BRAF inhibitor and/or MEK inhibitor (MEKi) in melanoma; however, continuous dosing elicits toxicities in patients. Using quantitative and temporal in vivo reporting, we show that continuous MEKi with intermittent CDK4/6 inhibitor (CDK4/6i) led to more complete tumor responses versus other combination schedules. Nevertheless, some tumors acquired resistance that was associated with enhanced phosphorylation of ribosomal S6 protein. These data were supported by phospho-S6 staining of melanoma biopsies from patients treated with CDK4/6i plus targeted inhibitors. Enhanced phospho-S6 in resistant tumors provided a therapeutic window for the mTORC1/2 inhibitor AZD2014. Mechanistically, upregulation or mutation of NRAS was associated with resistance in in vivo models and patient samples, respectively, and mutant NRAS was sufficient to enhance resistance. This study utilizes an in vivo reporter model to optimize schedules and supports targeting mTORC1/2 to overcome MEKi plus CDK4/6i resistance.Significance: Mutant BRAF and NRAS melanomas acquire resistance to combined MEK and CDK4/6 inhibition via upregulation of mTOR pathway signaling. This resistance mechanism provides the preclinical basis to utilize mTORC1/2 inhibitors to improve MEKi plus CDK4/6i drug regimens. Cancer Discov; 8(5); 568-81. ©2018 AACR.See related commentary by Sullivan, p. 532See related article by Romano et al., p. 556This article is highlighted in the In This Issue feature, p. 517.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição E2F/metabolismo , Expressão Gênica , Genes Reporter , Inibidores de Proteínas Quinases/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Modelos Animais de Doenças , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Fosforilação , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Biol Ther ; 14(10): 883-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23917487

RESUMO

RTOG 0839 is a Phase II study of pre-operative chemoradiotherapy with or without panitumumab in potentially operable locally advanced non-small cell lung cancer (NSCLC). The investigational agent, panitumumab, is an anti-epithelial growth factor receptor (EGFR) antibody that improves progression-free survival in chemorefractory metastatic colorectal cancer (mCRC). Recently, both KRAS mutational status (i.e., mutated or not) and subtype (i.e., activating or inactivating) have been shown to be predictive of response to anti-EGFR therapy in mCRC. However, in NSCLC, it is unknown if KRAS mutational status or subtype predict benefit to anti-EGFR therapies because of unique genetic and epigenetic factors unique to each cancer. We present a patient with stage III NSCLC containing a KRAS G12D activating mutation who had a partial pathologic response, with disappearance of a minor KRAS mutant clone. This case suggests possible eradication of the G12D KRAS lung cancer clones by concurrent chemoradiation with panitumumab.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Anticorpos Monoclonais/administração & dosagem , Sequência de Bases , Carboplatina/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia , Análise Mutacional de DNA , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Pessoa de Meia-Idade , Paclitaxel/administração & dosagem , Panitumumabe , Proteínas Proto-Oncogênicas p21(ras) , Radiografia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA