Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770640

RESUMO

The maintenance of a proper NAD+ pool is essential for cell survival, and tumor cells are particularly sensitive to changes in coenzyme levels. In this view, the inhibition of NAD+ biosynthesis is considered a promising therapeutic approach. Current research is mostly focused on targeting the enzymes nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT), which regulate NAD+ biosynthesis from nicotinamide and nicotinic acid, respectively. In several types of cancer cells, both enzymes are relevant for NAD+ biosynthesis, with NAPRT being responsible for cell resistance to NAMPT inhibition. While potent NAMPT inhibitors have been developed, only a few weak NAPRT inhibitors have been identified so far, essentially due to the lack of an easy and fast screening assay. Here we present a continuous coupled fluorometric assay whereby the product of the NAPRT-catalyzed reaction is enzymatically converted to NADH, and NADH formation is measured fluorometrically. The assay can be adapted to screen compounds that interfere with NADH excitation and emission wavelengths by coupling NADH formation to the cycling reduction of resazurin to resorufin, which is monitored at longer wavelengths. The assay system was validated by confirming the inhibitory effect of some NA-related compounds on purified human recombinant NAPRT. In particular, 2-hydroxynicotinic acid, 2-amminonicotinic acid, 2-fluoronicotinic acid, pyrazine-2-carboxylic acid, and salicylic acid were confirmed as NAPRT inhibitors, with Ki ranging from 149 to 348 µM. Both 2-hydroxynicotinic acid and pyrazine-2-carboxylic acid were found to sensitize OVCAR-5 cells to the NAMPT inhibitor FK866 by decreasing viability and intracellular NAD+ levels.


Assuntos
NAD , Niacina , Humanos , NAD/metabolismo , Linhagem Celular Tumoral , Pentosiltransferases , Nicotinamida Fosforribosiltransferase , Citocinas/metabolismo , Niacina/farmacologia
2.
J Biol Chem ; 298(3): 101669, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120922

RESUMO

The secreted form of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes a key reaction in intracellular NAD biosynthesis, acts as a damage-associated molecular pattern triggering Toll-like receptor 4 (TLR4)-mediated inflammatory responses. However, the precise mechanism of interaction is unclear. Using an integrated approach combining bioinformatics and functional and structural analyses, we investigated the interaction between NAMPT and TLR4 at the molecular level. Starting from previous evidence that the bacterial ortholog of NAMPT cannot elicit the inflammatory response, despite a high degree of structural conservation, two positively charged areas unique to the human enzyme (the α1-α2 and ß1-ß2 loops) were identified as likely candidates for TLR4 binding. However, alanine substitution of the positively charged residues within these loops did not affect either the oligomeric state or the catalytic efficiency of the enzyme. The kinetics of the binding of wildtype and mutated NAMPT to biosensor-tethered TLR4 was analyzed. We found that mutations in the α1-α2 loop strongly decreased the association rate, increasing the KD value from 18 nM, as determined for the wildtype, to 1.3 µM. In addition, mutations in the ß1-ß2 loop or its deletion increased the dissociation rate, yielding KD values of 0.63 and 0.22 µM, respectively. Mutations also impaired the ability of NAMPT to trigger the NF-κB inflammatory signaling pathway in human cultured macrophages. Finally, the involvement of the two loops in receptor binding was supported by NAMPT-TLR4 docking simulations. This study paves the way for future development of compounds that selectively target eNAMPT/TLR4 signaling in inflammatory disorders.


Assuntos
Citocinas , Nicotinamida Fosforribosiltransferase , Receptor 4 Toll-Like , Citocinas/genética , Citocinas/metabolismo , Humanos , NAD/metabolismo , NF-kappa B/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
IUBMB Life ; 74(7): 562-572, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34866305

RESUMO

The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes a reaction central to all known NAD biosynthetic routes. In mammals, three isoforms with distinct molecular and catalytic properties, different subcellular and tissue distribution have been characterized. Each isoform is essential for cell survival, with a critical role in modulating NAD levels in a compartment-specific manner. Each isoform supplies NAD to specific NAD-dependent enzymes, thus regulating their activity with impact on several biological processes, including DNA repair, proteostasis, cell differentiation, and neuronal maintenance. The nuclear NMNAT1 and the cytoplasmic NMNAT2 are also emerging as relevant targets in specific types of cancers and NMNAT2 has a key role in the activation of antineoplastic compounds. This review recapitulates the biochemical properties of the three isoforms and focuses on recent advances on their protective function, involvement in human diseases and role as druggable targets.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Animais , Núcleo Celular/metabolismo , Citosol/metabolismo , Humanos , Mamíferos/metabolismo , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/química , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA