Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NanoImpact ; 31: 100466, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209722

RESUMO

BACKGROUND: The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes). The lung model was exposed to NMs using the VITROCELL® Cloud12 system at physiologically relevant dose levels. RESULTS: Overall, the results of the 7 participating laboratories are quite similar. After exposing Calu-3 alone and Calu-3 co-cultures with macrophages, no effects of lipopolysaccharide (LPS), quartz (DQ12) or titanium dioxide (TiO2) NM-105 particles on the cell viability and barrier integrity were detected. LPS exposure induced moderate cytokine release in the Calu-3 monoculture, albeit not statistically significant in most labs. In the co-culture models, most laboratories showed that LPS can significantly induce cytokine release (IL-6, IL-8 and TNF-α). The exposure to quartz and TiO2 particles did not induce a statistically significant increase in cytokine release in both cell models probably due to our relatively low deposited doses, which were inspired by in vivo dose levels. The intra- and inter-laboratory comparison study indicated acceptable interlaboratory variation for cell viability/toxicity (WST-1, LDH) and transepithelial electrical resistance, and relatively high inter-laboratory variation for cytokine production. CONCLUSION: The transferability and reproducibility of a lung co-culture model and its exposure to aerosolized particles at the ALI were evaluated and recommendations were provided for performing inter-laboratory comparison studies. Although the results are promising, optimizations of the lung model (including more sensitive read-outs) and/or selection of higher deposited doses are needed to enhance its predictive value before it may be taken further towards a possible OECD guideline.


Assuntos
Lipopolissacarídeos , Quartzo , Animais , Humanos , Técnicas de Cocultura , Reprodutibilidade dos Testes , Pulmão , Citocinas
2.
Sci Rep ; 11(1): 9357, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931660

RESUMO

Grain dust exposure is associated with respiratory symptoms among grain industry workers. However, the fungal assemblage that contribute to airborne grain dust has been poorly studied. We characterized the airborne fungal diversity at industrial grain- and animal feed mills, and identified differences in diversity, taxonomic compositions and community structural patterns between seasons and climatic zones. The fungal communities displayed strong variation between seasons and climatic zones, with 46% and 21% of OTUs shared between different seasons and climatic zones, respectively. The highest species richness was observed in the humid continental climate of the southeastern Norway, followed by the continental subarctic climate of the eastern inland with dryer, short summers and snowy winters, and the central coastal Norway with short growth season and lower temperature. The richness did not vary between seasons. The fungal diversity correlated with some specific mycotoxins in settled dust and with fibrinogen in the blood of exposed workers, but not with the personal exposure measurements of dust, glucans or spore counts. The study contributes to a better understanding of fungal exposures in the grain and animal feed industry. The differences in diversity suggest that the potential health effects of fungal inhalation may also be different.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Mediadores da Inflamação/metabolismo , Inflamação/epidemiologia , Exposição por Inalação/efeitos adversos , Micobioma , Micotoxinas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Grão Comestível/química , Fungos/classificação , Fungos/patogenicidade , Humanos , Inflamação/etiologia , Inflamação/patologia , Exposição por Inalação/análise , Micotoxinas/análise , Noruega/epidemiologia , Exposição Ocupacional/análise , Estações do Ano
3.
Sci Rep ; 10(1): 11317, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647120

RESUMO

Dust from grain and feed production may cause adverse health effects in exposed workers. In this study we explored circulating miRNAs as potential biomarkers of occupational grain dust exposure. Twenty-two serum miRNAs were analyzed in 44 grain dust exposed workers and 22 controls. Exposed workers had significantly upregulated miR-18a-5p, miR-124-3p and miR-574-3p, and downregulated miR-19b-3p and miR-146a-5p, compared to controls. Putative target genes for the differentially expressed miRNAs were involved in a range of Kyoto Encyclopedia of Genes and Genomes signaling pathways, and 'Pathways in cancer' and 'Wnt signaling pathway' were common for all the five miRNAs. MiRNA-diseases association analysis showed a link between the five identified miRNAs and several lung diseases terms. A positive correlation between miR-124-3p, miR-18a-5p, and miR-574-3p and IL-6 protein level was shown, while miR-19b-3p was inversely correlated with CC-16 and sCD40L protein levels. Receiver-operating characteristic analysis of the five miRNA showed that three miRNAs (miR-574-3p, miR-124-3p and miR-18a-5p) could distinguish the grain dust exposed group from the control group, with miR-574-3p as the strongest predictor of grain dust exposure. In conclusion, this study identified five signature miRNAs as potential novel biomarkers of grain dust exposure that may have potential as early disease markers.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , MicroRNA Circulante/sangue , Poeira , Grão Comestível/efeitos adversos , Exposição Ocupacional/efeitos adversos , Adolescente , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420347

RESUMO

Exposure to fungal spores has been associated with respiratory symptoms and allergic alveolitis among sawmill workers, but the complexity of sawmill workers' fungal exposure has been poorly studied. We characterized the fungal diversity in air samples from sawmill workers' breathing zones and identified differences in the richness, diversity, and taxonomic composition between companies, departments, wood types, and seasons. Full-shift personal inhalable dust samples (n = 86) collected from 11 industrial sawmill, sorting mill, and planer mill companies processing spruce and/or pine were subjected to DNA metabarcoding using the fungal internal transcribed spacer (ITS) region 2. The workers were exposed to a higher total number of operational taxonomic units (OTUs) in summer than in winter and when processing spruce than when processing pine. Workers in the saw department had the richest fungal exposure, followed by workers in the planing department and sorting of dry timber department. Sawmills explained 11% of the variation in the fungal community composition of the exposure, followed by season (5%) and department (3%). The fungal compositions of the exposures also differed between seasons, sawmills, wood types, and departments at the taxonomic level, ranging from the phylum to the species level. The differences in exposure diversity suggest that the potential health effects of fungal inhalation may also be different; hence, a risk assessment based on the fungal diversity differences should be performed. This study may serve as a basis for establishing a fungal profile of signature species that are specific for sawmills and that can be measured quantitatively in future risk assessments of sawmill workers.IMPORTANCE To gain more knowledge about exposure-response relationships, it is important to improve exposure characterization by comprehensively identifying the temporal and spatial fungal composition and diversity of inhalable dust at workplaces. The variation in the diverse fungal communities to which individuals are exposed in different seasons and sawmills suggests that variations in exposure-related health effects between seasons and companies can be expected. More importantly, the distinct fungal profiles between departments across companies indicate that workers in different job groups are differently exposed and that health risks can be department specific. DNA metabarcoding provides insight into a broad spectrum of airborne fungi that may serve as a basis for obtaining important knowledge about the fungi to which workers are exposed.


Assuntos
Biodiversidade , Exposição por Inalação , Micobioma , Exposição Ocupacional , Madeira , Ar , Microbiologia do Ar , Poeira , Monitoramento Ambiental , Fungos/classificação , Humanos , Análise Multivariada , Filogenia , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA