Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38438691

RESUMO

INTRODUCTION: Fractional Flow Reserve (FFR) is used to characterize the functional significance of coronary artery stenoses. FFR is assessed under hyperemic conditions by invasive measurements of trans-stenotic pressure thanks to the insertion of a pressure guidewire across the coronary stenosis during catheterization. In order to overcome the potential risk related to the invasive procedure and to reduce the associated high costs, three-dimensional blood flow simulations that incorporate clinical imaging and patient-specific characteristics have been proposed. PURPOSE: Most CCTA-derived FFR models neglect the potential influence of the guidewire on computed flow and pressure. Here we aim to quantify the impact of taking into account the presence of the guidewire in model-based FFR prediction. METHODS: We adopt a CCTA-derived FFR model and perform simulations with and without the guidewire for 18 patients with suspected stable CAD. RESULTS: Presented results show that the presence of the guidewire leads to a tendency to predict a lower FFR value. The FFR reduction is prominent in cases of severe stenoses, while the influence of the guidewire is less pronounced in cases of moderate stenoses. CONCLUSION: From a clinical decision-making point of view, including of the pressure guidewire is potentially relevant only for intermediate stenosis cases.

2.
Int J Numer Method Biomed Eng ; 37(11): e3246, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-31397083

RESUMO

Model-based prediction of fractional flow reserve (FFR) in the context of stable coronary artery disease (CAD) diagnosis requires a number of modelling assumptions. One of these assumptions is the definition of a baseline coronary flow, ie, total coronary flow at rest prior to the administration of drugs needed to perform invasive measurements. Here we explore the impact of several methods available in the literature to estimate and distribute baseline coronary flow on FFR predictions obtained with a reduced-order model. We consider 63 patients with suspected stable CAD, for a total of 105 invasive FFR measurements. First, we improve a reduced-order model with respect to previous results and validate its performance versus results obtained with a 3D model. Next, we assess the impact of a wide range of methods to impose and distribute baseline coronary flow on FFR prediction, which proved to have a significant impact on diagnostic performance. However, none of the proposed methods resulted in a significant improvement of prediction error standard deviation. Finally, we show that intrinsic uncertainties related to stenosis geometry and the effect of hyperemic inducing drugs have to be addressed in order to improve FFR prediction accuracy.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Angiografia Coronária , Estenose Coronária/diagnóstico por imagem , Hemodinâmica , Humanos
3.
Cardiovasc Eng Technol ; 9(4): 597-622, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30382522

RESUMO

PURPOSE: The main objectives of this study are to validate a reduced-order model for the estimation of the fractional flow reserve (FFR) index based on blood flow simulations that incorporate clinical imaging and patient-specific characteristics, and to assess the uncertainty of FFR predictions with respect to input data on a per patient basis. METHODS: We consider 13 patients with symptoms of stable coronary artery disease for which 24 invasive FFR measurements are available. We perform an extensive sensitivity analysis on the parameters related to the construction of a reduced-order (hybrid 1D-0D) model for FFR predictions. Next we define an optimal setting by comparing reduced-order model predictions with solutions based on the 3D incompressible Navier-Stokes equations. Finally, we characterize prediction uncertainty with respect to input data and identify the most influential inputs by means of sensitivity analysis. RESULTS: Agreement between FFR computed by the reduced-order model and by the full 3D model was satisfactory, with a bias ([Formula: see text]) of [Formula: see text] at the 24 measured locations. Moreover, the uncertainty related to the factor by which peripheral resistance is reduced from baseline to hyperemic conditions proved to be the most influential parameter for FFR predictions, whereas uncertainty in stenosis geometry had greater effect in cases with low FFR. CONCLUSION: Model errors related to solving a simplified reduced-order model rather than a full 3D problem were small compared with uncertainty related to input data. Improved measurement of coronary blood flow has the potential to reduce uncertainty in computational FFR predictions significantly.


Assuntos
Cateterismo Cardíaco/métodos , Doença da Artéria Coronariana/diagnóstico , Estenose Coronária/diagnóstico , Vasos Coronários/fisiopatologia , Reserva Fracionada de Fluxo Miocárdico , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Idoso , Velocidade do Fluxo Sanguíneo , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/fisiopatologia , Estenose Coronária/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Reprodutibilidade dos Testes , Incerteza
4.
J R Soc Interface ; 15(149): 20180546, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30958234

RESUMO

As computational models of the cardiovascular system are applied in modern personalized medicine, maximizing certainty of model input becomes crucial. A model with a high number of arterial segments results in a more realistic description of the system, but also requires a high number of parameters with associated uncertainties. In this paper, we present a method to optimize/reduce the number of arterial segments included in one-dimensional blood flow models, while preserving key features of flow and pressure waveforms. We quantify the preservation of key flow features for the optimal network with respect to the baseline networks (a 96-artery and a patient-specific coronary network) by various metrics and quantities like average relative error, pulse pressure and augmentation pressure. Furthermore, various physiological and pathological states are considered. For the aortic root and larger systemic artery pressure waveforms a network with minimal description of lower and upper limb arteries and no cerebral arteries, sufficiently captures important features such as pressure augmentation and pulse pressure. Discrepancies in carotid and middle cerebral artery flow waveforms that are introduced by describing the arterial system in a minimalistic manner are small compared with errors related to uncertainties in blood flow measurements obtained by ultrasound.


Assuntos
Aorta/fisiologia , Pressão Arterial , Modelos Cardiovasculares , Aorta/anatomia & histologia , Velocidade do Fluxo Sanguíneo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA