Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Biol Sci ; 290(2013): 20231574, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38113939

RESUMO

Spatial memory helps animals to navigate familiar environments. In insects, spatial memory has extensively been studied in central place foragers such as ants and bees. However, if butterflies memorize a spatial location remains unclear. Here, we conducted behavioural experiments to test whether monarch butterflies (Danaus plexippus) can remember and retrieve the spatial location of a food source. We placed several visually identical feeders in a flight cage, with only one feeder providing sucrose solution. Across multiple days, individual butterflies predominantly visited the rewarding feeder. Next, we displaced a salient landmark close to the feeders to test which visual cue the butterflies used to relocate the rewarding feeder. While occasional landmark displacements were ignored by the butterflies and did not affect their decisions, systematic displacement of both the landmark and the rewarding feeder demonstrated that the butterflies associated the salient landmark with the feeder's position. Altogether, we show that butterflies consolidate and retrieve spatial memory in the context of foraging.


Assuntos
Borboletas , Abelhas , Animais , Memória Espacial , Alimentos
2.
Sci Total Environ ; 898: 165527, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451452

RESUMO

Agrochemicals represent prominent anthropogenic stressors contributing to the ongoing global insect decline. While their impact is generally assessed in terms of mortality rates, non-lethal effects on fitness are equally important to insect conservation. Glyphosate, a commonly used herbicide, is toxic to many animal species, and thought to impact a range of physiological functions. In this study, we investigate the impact of long-term exposure to glyphosate on locomotion, phototaxis and learning abilities in bumblebees, using a fully automated high-throughput assay. We find that glyphosate exposure had a very slight and transient impact on locomotion, while leaving the phototactic drive unaffected. Glyphosate exposure also reduced attraction towards UV light when blue was given as an alternative and, most strikingly, impaired learning of aversive stimuli. Thus, glyphosate had specific actions on sensory and cognitive processes. These non-lethal perceptual and cognitive impairments likely represent a significant obstacle to foraging and predator avoidance for wild bumblebees exposed to glyphosate. Similar effects in other species could contribute to a widespread reduction in foraging efficiency across ecosystems, driven by the large-scale application of this herbicide. The high-throughput paradigm presented in this study can be adapted to investigate sublethal effects of other agrochemicals on bumblebees or other important pollinator species, opening up a critical new avenue for the study of anthropogenic stressors.

3.
Proc Biol Sci ; 290(1999): 20230460, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192665

RESUMO

The behavioural state of animals has profound effects on neuronal information processing. Locomotion changes the response properties of visual interneurons in the insect brain, but it is still unknown if it also alters the response properties of photoreceptors. Photoreceptor responses become faster at higher temperatures. It has therefore been suggested that thermoregulation in insects could improve temporal resolution in vision, but direct evidence for this idea has so far been missing. Here, we compared electroretinograms from the compound eyes of tethered bumblebees that were either sitting or walking on an air-supported ball. We found that the visual processing speed strongly increased when the bumblebees were walking. By monitoring the eye temperature during recording, we saw that the increase in response speed was in synchrony with a rise in eye temperature. By artificially heating the head, we show that the walking-induced temperature increase of the visual system is sufficient to explain the rise in processing speed. We also show that walking accelerates the visual system to the equivalent of a 14-fold increase in light intensity. We conclude that the walking-induced rise in temperature accelerates the processing of visual information-an ideal strategy to process the increased information flow during locomotion.


Assuntos
Luz , Percepção Visual , Animais , Abelhas , Locomoção , Caminhada , Tempo de Reação
4.
Front Integr Neurosci ; 16: 914246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187138

RESUMO

Many insects rely on path integration to define direct routes back to their nests. When shuttling hundreds of meters back and forth between a profitable foraging site and a nest, navigational errors accumulate unavoidably in this compass- and odometer-based system. In familiar terrain, terrestrial landmarks can be used to compensate for these errors and safely guide the insect back to its nest with pin-point precision. In this study, we investigated the homing strategies employed by Camponotus fulvopilosus ants when repeatedly foraging no more than 1.25 m away from their nest. Our results reveal that the return journeys of the ants, even when setting out from a feeder from which the ants could easily get home using landmark information alone, are initially guided by path integration. After a short run in the direction given by the home vector, the ants then switched strategies and started to steer according to the landmarks surrounding their nest. We conclude that even when foraging in the close vicinity of its nest, an ant still benefits from its path-integrated vector to direct the start of its return journey.

5.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037692

RESUMO

The sun is the most prominent source of directional information in the heading direction network of the diurnal, ball-rolling dung beetle Kheper lamarcki. If this celestial body is occluded from the beetle's field of view, the distribution of the relative weight between the directional cues that remain shifts in favour of the celestial pattern of polarised light. In this study, we continue to explore the interplay of the sun and polarisation pattern as directional cues in the heading direction network of K. lamarcki. By systematically altering the intensity and degree of the two cues, we effectively change the relative reliability as they appear to the dung beetle. The response of the beetle to these modifications allows us to closely examine how the weighting relationship of these two sources of directional information is influenced and altered in the heading direction network of the beetle. We conclude that the process by which K. lamarcki relies on directional information is very likely done based on Bayesian reasoning, where directional information conveying the highest certainty at a particular moment is afforded the greatest weight.


Assuntos
Besouros , Animais , Teorema de Bayes , Comportamento Animal/fisiologia , Besouros/fisiologia , Sinais (Psicologia) , Reprodutibilidade dos Testes
6.
Curr Biol ; 31(17): 3935-3942.e3, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34329592

RESUMO

Increasing global light pollution1,2 threatens the night-time darkness to which most animals are adapted. Light pollution can have detrimental effects on behavior,3-5 including by disrupting the journeys of migratory birds,5,6 sand hoppers,7-9 and moths.10 This is particularly concerning, since many night-active species rely on compass information in the sky, including the moon,11,12 the skylight polarization pattern,13,14 and the stars,15 to hold their course. Even animals not directly exposed to streetlights and illuminated buildings may still experience indirect light pollution in the form of skyglow,3,4 which can extend far beyond urban areas.1,2 While some recent research used simulated light pollution to estimate how skyglow may affect orientation behavior,7-9 the consequences of authentic light pollution for celestial orientation have so far been neglected. Here, we present the results of behavioral experiments at light-polluted and dark-sky sites paired with photographic measurements of each environment. We find that light pollution obscures natural celestial cues and induces dramatic changes in dung beetle orientation behavior, forcing them to rely on bright earthbound beacons in place of their celestial compass. This change in behavior results in attraction toward artificial lights, thereby increasing inter-individual competition and reducing dispersal efficiency. For the many other species of insect, bird, and mammal that rely on the night sky for orientation and migration, these effects could dramatically hinder their vital night-time journeys.


Assuntos
Besouros , Animais , Aves , Sinais (Psicologia) , Luz , Poluição Luminosa , Mamíferos , Lua
7.
Sports Biomech ; : 1-14, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33470915

RESUMO

The Overhead Squat (OHS) and Single-Leg Squat (SLS) are two clinical tests used by practitioners to identify high-risk biomechanical movement patterns. Several published studies have reported sex differences in SLS performance; however, few have investigated variations during the OHS and none has measured kinematics with a marker-less motion capture system. Therefore, this study aimed to compare biomechanical movement patterns between male and female collegiate athletes during OHS and SLS testing. Seventy-five females and 58 male athletes completed OHS and SLS . A Microsoft Kinect sensor using Athletic Movement Assessment software (PhysiMax®) was used to measure kinematics. For the OHS, males displayed greater peak knee frontal plane projection angles (FPPA) (M:26°±10°, F:20°±8°; P < 0.05), peak hip flexion (M:-94°±14°, F:-87°±15°; P < 0.05), and peak trunk flexion angles (M:11°±11°, F:6°±9°; P < 0.05). For the SLS (dominant-limb), males displayed greater peak trunk flexion (M:32°±6°, F:27°±7°; P < 0.05). For the non-dominant limb, females displayed greater peak knee FPPA (F:-12°±9°, M:-8°±9°; P < 0.05) whereas males displayed greater peak trunk flexion angles (M:32°±5°, F:27°±7°; P < 0.05). These findings suggest the need for practitioners to develop sex-specific corrective exercise programmes in effort to improve lower extremity kinematics in athletes.

8.
J Exp Biol ; 223(Pt 24)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33097569

RESUMO

How well can a bird discriminate between two red berries on a green background? The absolute threshold of colour discrimination is set by photoreceptor noise, but animals do not perform at this threshold; their performance can depend on additional factors. In humans and zebra finches, discrimination thresholds for colour stimuli depend on background colour, and thus the adaptive state of the visual system. We have tested how well chickens can discriminate shades of orange or green presented on orange or green backgrounds. Chickens discriminated slightly smaller colour differences between two stimuli presented on a similarly coloured background, compared with a background of very different colour. The slope of the psychometric function was steeper when stimulus and background colours were similar but shallower when they differed markedly, indicating that background colour affects the certainty with which the animals discriminate the colours. The effect we find for chickens is smaller than that shown for zebra finches. We modelled the response to stimuli using Bayesian and maximum likelihood estimation and implemented the psychometric function to estimate the effect size. We found that the result is independent of the psychophysical method used to evaluate the effect of experimental conditions on choice performance.


Assuntos
Percepção de Cores , Visão de Cores , Animais , Teorema de Bayes , Galinhas , Cor
9.
J Exp Biol ; 223(Pt 12)2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32341174

RESUMO

Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration from North America to their overwintering area in Central Mexico. To find their way on this long journey, they use a sun compass as their main orientation reference but will also adjust their migratory direction with respect to mountain ranges. This indicates that the migratory butterflies also attend to the panorama to guide their travels. Although the compass has been studied in detail in migrating butterflies, little is known about the orientation abilities of non-migrating butterflies. Here, we investigated whether non-migrating butterflies - which stay in a more restricted area to feed and breed - also use a similar compass system to guide their flights. Performing behavioral experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline was presented as the only orientation cue, the butterflies maintained their flight direction only during short sequences, suggesting that they potentially use it for flight stabilization. We further found that when we presented the two cues together, the butterflies incorporate both cues in their compass. Taken together, we show here that non-migrating monarch butterflies can combine multiple visual cues for robust orientation, an ability that may also aid them during their migration.


Assuntos
Borboletas , Migração Animal , Animais , Sinais (Psicologia) , México , América do Norte , Orientação Espacial
10.
Proc Natl Acad Sci U S A ; 116(28): 14248-14253, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235569

RESUMO

South African ball-rolling dung beetles exhibit a unique orientation behavior to avoid competition for food: after forming a piece of dung into a ball, they efficiently escape with it from the dung pile along a straight-line path. To keep track of their heading, these animals use celestial cues, such as the sun, as an orientation reference. Here we show that wind can also be used as a guiding cue for the ball-rolling beetles. We demonstrate that this mechanosensory compass cue is only used when skylight cues are difficult to read, i.e., when the sun is close to the zenith. This raises the question of how the beetles combine multimodal orientation input to obtain a robust heading estimate. To study this, we performed behavioral experiments in a tightly controlled indoor arena. This revealed that the beetles register directional information provided by the sun and the wind and can use them in a weighted manner. Moreover, the directional information can be transferred between these 2 sensory modalities, suggesting that they are combined in the spatial memory network in the beetle's brain. This flexible use of compass cue preferences relative to the prevailing visual and mechanosensory scenery provides a simple, yet effective, mechanism for enabling precise compass orientation at any time of the day.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Besouros/fisiologia , Orientação Espacial/fisiologia , Animais , Atividade Motora/fisiologia , Sistema Solar , Memória Espacial/fisiologia , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA