RESUMO
Introduction: To avoid the negative impacts of winter unfavorable conditions for plant development, temperate trees enter a rest period called dormancy. Winter dormancy is a complex process that involves multiple signaling pathways and previous studies have suggested that transport capacity between cells and between the buds and the twig may regulate the progression throughout dormancy stages. However, the dynamics and molecular actors involved in this regulation are still poorly described in fruit trees. Methods: Here, in order to validate the hypothesis that transport capacity regulates dormancy progression in fruit trees, we combined physiological, imaging and transcriptomic approaches to characterize molecular pathways and transport capacity during dormancy in sweet cherry (Prunus avium L.) flower buds. Results: Our results show that transport capacity is reduced during dormancy and could be regulated by environmental signals. Moreover, we demonstrate that dormancy release is not synchronized with the transport capacity resumption but occurs when the bud is capable of growth under the influence of warmer temperatures. We highlight key genes involved in transport capacity during dormancy. Discussion: Based on long-term observations conducted during six winter seasons, we propose hypotheses on the environmental and molecular regulation of transport capacity, in relation to dormancy and growth resumption in sweet cherry.
RESUMO
In sweet cherry (Prunus avium L.), large variability exists for various traits related to fruit quality. There is a need to discover the genetic architecture of these traits in order to enhance the efficiency of breeding strategies for consumer and producer demands. With this objective, a germplasm collection consisting of 116 sweet cherry accessions was evaluated for 23 agronomic fruit quality traits over 2-6 years, and characterized using a genotyping-by-sequencing approach. The SNP coverage collected was used to conduct a genome-wide association study using two multilocus models and three reference genomes. We identified numerous SNP-trait associations for global fruit size (weight, width, and thickness), fruit cracking, fruit firmness, and stone size, and we pinpointed several candidate genes involved in phytohormone, calcium, and cell wall metabolisms. Finally, we conducted a precise literature review focusing on the genetic architecture of fruit quality traits in sweet cherry to compare our results with potential colocalizations of marker-trait associations. This study brings new knowledge of the genetic control of important agronomic traits related to fruit quality, and to the development of marker-assisted selection strategies targeted towards the facilitation of breeding efforts.
RESUMO
Flowering date is an important trait in Prunus fruit species, especially for their adaptation in a global warming context. Numerous quantitative trait loci (QTLs) have been identified and a major one was previously located on LG4. The objectives of this study were to fine-map this QTL in sweet cherry, to identify robust candidate genes by using the new sweet cherry genome sequence of the cultivar 'Regina' and to define markers usable in marker-assisted selection (MAS). We performed QTL analyses on two populations derived from crosses using cultivars 'Regina' and 'Garnet' as parents. The first one (n = 117) was phenotyped over ten years, while the second one (n = 1386) was evaluated during three years. Kompetitive allele specific PCR (KASP) markers located within the QTL region on LG4 were developed and mapped within this region, consisting in the first fine mapping in sweet cherry. The QTL interval was narrowed from 380 kb to 68 kb and candidate genes were identified by using the genome sequence of 'Regina'. Their expression was analyzed from bud dormancy period to flowering in cultivars 'Regina' and 'Garnet'. Several genes, such as PavBOI-E3, PavSR45a and PavSAUR71, were differentially expressed in these two cultivars and could be then considered as promising candidate genes. Two KASP markers were validated using a population derived from a cross between cultivars 'Regina' and 'Lapins' and two collections, including landraces and modern cultivars. Thanks to the high synteny within the Prunus genus, these results give new insights into the control of flowering date in Prunus species and pave the way for the development of molecular breeding strategies.
RESUMO
BACKGROUND: Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation. In this work, we aimed to further explore the global transcriptional changes happening throughout bud development and dormancy onset, progression and release. RESULTS: Using next-generation sequencing and modelling, we conducted an in-depth transcriptomic analysis for all stages of flower buds in several sweet cherry (Prunus avium L.) cultivars that are characterized for their contrasted dates of dormancy release. We find that buds in organogenesis, paradormancy, endodormancy and ecodormancy stages are defined by the expression of genes involved in specific pathways, and these are conserved between different sweet cherry cultivars. In particular, we found that DORMANCY ASSOCIATED MADS-box (DAM), floral identity and organogenesis genes are up-regulated during the pre-dormancy stages while endodormancy is characterized by a complex array of signalling pathways, including cold response genes, ABA and oxidation-reduction processes. After dormancy release, genes associated with global cell activity, division and differentiation are activated during ecodormancy and growth resumption. We then went a step beyond the global transcriptomic analysis and we developed a model based on the transcriptional profiles of just seven genes to accurately predict the main bud dormancy stages. CONCLUSIONS: Overall, this study has allowed us to better understand the transcriptional changes occurring throughout the different phases of flower bud development, from bud formation in the summer to flowering in the following spring. Our work sets the stage for the development of fast and cost effective diagnostic tools to molecularly define the dormancy stages. Such integrative approaches will therefore be extremely useful for a better comprehension of complex phenological processes in many species.
Assuntos
Perfilação da Expressão Gênica/métodos , Dormência de Plantas , Proteínas de Plantas/genética , Prunus avium/fisiologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Prunus avium/genéticaRESUMO
In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Proteínas de Membrana/genética , Plasmodesmos/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glicosiltransferases/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Fosfolipídeos/metabolismo , Células Vegetais , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Plasmodesmos/ultraestrutura , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Proteína Vermelha FluorescenteRESUMO
Plasmodesmata are remarkable cellular machines responsible for the controlled exchange of proteins, small RNAs and signalling molecules between cells. They are lined by the plasma membrane (PM), contain a strand of tubular endoplasmic reticulum (ER), and the space between these two membranes is thought to control plasmodesmata permeability. Here, we have reconstructed plasmodesmata three-dimensional (3D) ultrastructure with an unprecedented level of 3D information using electron tomography. We show that within plasmodesmata, ER-PM contact sites undergo substantial remodelling events during cell differentiation. Instead of being open pores, post-cytokinesis plasmodesmata present such intimate ER-PM contact along the entire length of the pores that no intermembrane gap is visible. Later on, during cell expansion, the plasmodesmata pore widens and the two membranes separate, leaving a cytosolic sleeve spanned by tethers whose presence correlates with the appearance of the intermembrane gap. Surprisingly, the post-cytokinesis plasmodesmata allow diffusion of macromolecules despite the apparent lack of an open cytoplasmic sleeve, forcing the reassessment of the mechanisms that control plant cell-cell communication.
Assuntos
Citocinese , Plasmodesmos/metabolismo , Actinas/metabolismo , Comunicação Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Permeabilidade , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plasmodesmos/ultraestruturaRESUMO
Plant phenolics have drawn increasing attention due to their potential nutritional benefits. Although the basic reactions of the phenolics biosynthetic pathways in plants have been intensively analyzed, the regulation of their accumulation and flux through the pathway is not that well established. The aim of this study was to use a strawberry (Fragaria × ananassa) microarray to investigate gene expression patterns associated with the accumulation of phenylpropanoids, flavonoids, and anthocyanins in strawberry fruit. An examination of the transcriptome, coupled with metabolite profiling data from different commercial varieties, was undertaken to identify genes whose expression correlated with altered phenolics composition. Seventeen comparative microarray analyses revealed 15 genes that were differentially (more than 200-fold) expressed in phenolics-rich versus phenolics-poor varieties. The results were validated by heterologous expression of the peroxidase FaPRX27 gene, which showed the highest altered expression level (more than 900-fold). The encoded protein was functionally characterized and is assumed to be involved in lignin formation during strawberry fruit ripening. Quantitative trait locus analysis indicated that the genomic region of FaPRX27 is associated with the fruit color trait. Down-regulation of the CHALCONE SYNTHASE gene and concomitant induction of FaPRX27 expression diverted the flux from anthocyanins to lignin. The results highlight the competition of the different phenolics pathways for their common precursors. The list of the 15 candidates provides new genes that are likely to impact polyphenol accumulation in strawberry fruit and could be used to develop molecular markers to select phenolics-rich germplasm.