Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2242, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755054

RESUMO

Agricultural soils can act as a sink for large quantities of soil organic carbon (SOC) but can also be sources of carbon to the atmosphere. The international standard for assessing SOC stock and measuring stock change stipulates fixed depth sampling to at least 30 cm. The tendency of bulk density (BD) to decrease with decreasing disturbance and increasing SOC concentration and the assumption of constant SOC and BD within this depth profile promotes error in the estimates of SOC stock. A hypothetical but realistic change in BD from 1.5 to 1.1 g cm-3 from successive fixed depth sampling to 30 cm underestimates SOC stock change by 17%. Significant effort has been made to evaluate and reduce this fixed depth error by using the equivalent soil mass (ESM) approach, but with limited adoption. We evaluate the error in SOC stock assessment and change generated from fixed depth measurements over time relative to the ESM approach and propose a correction that can be readily adopted under current sampling and analytical methods. Our approach provides a more accurate estimate of SOC stock accumulation or loss that will help incentivize management practice changes that reduce the environmental impacts of agriculture and further legitimize the accounting practices used by the emerging carbon market and organizations that have pledged to reduce their supply chain greenhouse gas (GHG) footprints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA