Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Neurosci ; 26(4): 673-681, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973511

RESUMO

Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience.


Assuntos
Mapeamento Encefálico , Encéfalo , Ratos , Animais , Mapeamento Encefálico/métodos , Consenso , Neuroimagem , Imageamento por Ressonância Magnética/métodos
3.
Brain Commun ; 4(2): fcac072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434622

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder with a decades-long pre-symptomatic phase, substantiating the need for prodromal biomarker development and early intervention. To deconstruct the processes underlying disease progression and identify potential biomarkers, we used neuroimaging techniques with high translational potential to human clinical studies in the TgF344-AD rat model which recapitulates the full spectrum of Alzheimer's neuropathology (progressive amyloid deposition, tauopathy, frank neuronal loss, gliosis, and cognitive dysfunction). We employed longitudinal MRI and magnetic resonance spectroscopy in conjunction with behavioural testing to characterize multiple facets of disease pathology in male and female TgF344-AD rats (n = 26, 14M/12F) relative to wildtype littermates (n = 24, 12M/12F). Testing was performed at 4, 10, 16, and 18 months, covering much of the adult rat lifespan and multiple stages of disease progression. The TgF344-AD model demonstrated impaired spatial reference memory in the Barnes Maze by 4 months of age, followed by neurochemical abnormalities in the hippocampus by 10 months and major structural changes by 16 months. Specifically, TgF344-AD rats displayed increased total choline and lactate, and decreased total creatine, taurine, and N-acetylaspartate to myo-inositol ratio, dentate gyrus hypertrophy, and atrophy in the hippocampus, hypothalamus, and nucleus accumbens. Overall, these findings support the use of MRI and magnetic resonance spectroscopy for the development of non-invasive biomarkers of disease progression, clarify the timing of pathological feature presentation in this model, and contribute to the validation of the TgF344-AD rat as a highly relevant model for pre-clinical Alzheimer's disease research.

4.
Neurobiol Aging ; 101: 109-122, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610061

RESUMO

Normal aging is associated with numerous biological changes, including altered brain metabolism and tissue chemistry. In vivo characterization of the neurochemical profile during aging is possible using magnetic resonance spectroscopy, a powerful noninvasive technique capable of quantifying brain metabolites involved in physiological processes that become impaired with age. A prominent macromolecular signal underlies those of brain metabolites and is particularly visible at high fields; parameterization of this signal into components improves quantification and expands the number of biomarkers comprising the neurochemical profile. The present study reports, for the first time, the simultaneous absolute quantification of brain metabolites and individual macromolecules in aging male and female Fischer 344 rats, measured longitudinally using proton magnetic resonance spectroscopy at 7 T. We identified age- and sex-related changes in neurochemistry, with prominent differences in metabolites implicated in anaerobic energy metabolism, antioxidant defenses, and neuroprotection, as well as numerous macromolecule changes. These findings contribute to our understanding of the neurobiological processes associated with healthy aging, critical for the proper identification and management of pathologic aging trajectories. This article is part of the Virtual Special Issue titled COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect athttps://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.


Assuntos
Encéfalo/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/metabolismo , Substâncias Macromoleculares/metabolismo , Caracteres Sexuais , Animais , Metabolismo Energético , Feminino , Espectroscopia de Ressonância Magnética/métodos , Masculino , Ratos Endogâmicos F344
5.
J Neurochem ; 149(4): 499-517, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30040874

RESUMO

Changes in glycerophosphocholine metabolism are observed in Alzheimer's disease; however, it is not known whether these metabolic disruptions are linked to cognitive decline. Here, using unbiased lipidomic approaches and direct biochemical assessments, we profiled Land's cycle lipid remodeling in the hippocampus, frontal cortex, and temporal-parietal-entorhinal cortices of human amyloid beta precursor protein (ΑßPP) over-expressing mice. We identified a cortex-specific hypo-metabolic signature at symptomatic onset and a cortex-specific hyper-metabolic signature of Land's cycle glycerophosphocholine remodeling over the course of progressive behavioral decline. When N5 TgCRND8 and ΑßPPSwe /PSIdE9 mice first exhibited deficits in the Morris Water Maze, levels of lyso-phosphatidylcholines, LPC(18:0/0:0), LPC(16:0/0:0), LPC(24:6/0:0), LPC(25:6/0:0), the lyso-platelet-activating factor (PAF), LPC(O-18:0/0:0), and the PAF, PC(O-22:6/2:0), declined as a result of reduced calcium-dependent cytosolic phospholipase A2 α (cPLA2 α) activity in all cortices but not hippocampus. Chronic intermittent hypoxia, an environmental risk factor that triggers earlier learning memory impairment in ΑßPPSwe /PSIdE9 mice, elicited these same metabolic changes in younger animals. Thus, this lipidomic signature of phenoconversion appears age-independent. By contrast, in symptomatic N5 TgCRND8 mice, cPLA2 α activity progressively increased; overall Lyso-phosphatidylcholines (LPC) and LPC(O) and PC(O-18:1/2:0) levels progressively rose. Enhanced cPLA2 α activity was only detected in transgenic mice; however, age-dependent increases in the PAF acetylhydrolase 1b α1 to α2 expression ratio, evident in both transgenic and non-transgenic mice, reduced PAF hydrolysis thereby contributing to PAF accumulation. Taken together, these data identify distinct age-independent and age-dependent disruptions in Land's cycle metabolism linked to symptomatic onset and progressive behavioral decline in animals with pre-existing Αß pathology. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Fosfatidilcolinas/metabolismo , Precursor de Proteína beta-Amiloide/toxicidade , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA