Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Mol Neurosci ; 17: 1459098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346680

RESUMO

Background: Most smokers attempting to quit will quickly relapse to tobacco use even when treated with the most efficacious smoking cessation agents currently available. This highlights the need to develop effective new smoking cessation medications. Evidence suggests that positive allosteric modulators (PAM) and other enhancers of nicotinic acetylcholine receptor (nAChR) signaling could have therapeutic utility as smoking cessation agents. Methods: 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283) was used as a starting point for medical chemistry efforts to develop novel small molecule enhancers of α4ß2* nAChR stoichiometries containing a low-affinity agonist binding site at the interface of α4/α4 and α4/α5 subunits. Results: The NS9283 derivative SR9883 enhanced the effect of nicotine on α4ß2* nAChR stoichiometries containing low-affinity agonist binding sites, with EC50 values from 0.2-0.4 µM. SR9883 had no effect on α3ß2* or α3ß4* nAChRs. SR9883 was bioavailable after intravenous (1 mg kg-1) and oral (10-20 mg kg-1) administration and penetrated into the brain. When administered alone, SR9883 (5-10 mg kg-1) had no effect on locomotor activity or intracranial self-stimulation (ICSS) thresholds in mice. When co-administered with nicotine, SR9883 enhanced locomotor suppression and elevations of ICSS thresholds induced by nicotine. SR9883 (5 and 10 mg kg-1) decreased responding for intravenous nicotine infusions (0.03 mg kg-1 per infusion) but had no effect on responding for food rewards in rats. Conclusions: These data suggest that SR9883 is useful for investigating behavioral processes regulated by certain α4ß2* nAChR stoichiometries. SR9883 and related compounds with favorable drug-like physiochemical and pharmacological properties hold promise as novel treatments of tobacco use disorder.

2.
Biomolecules ; 14(9)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39334909

RESUMO

Given the increasing use of cannabis in the US, there is an urgent need to better understand the drug's effects on central signaling mechanisms. Extracellular vesicles (EVs) have been identified as intercellular signaling mediators that contain a variety of cargo, including proteins. Here, we examined whether the main psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), alters EV protein signaling dynamics in the brain. We first conducted in vitro studies, which found that THC activates signaling in choroid plexus epithelial cells, resulting in transcriptional upregulation of the cannabinoid 1 receptor and immediate early gene c-fos, in addition to the release of EVs containing RNA cargo. Next, male and female rats were examined for the effects of either acute or chronic exposure to aerosolized ('vaped') THC on circulating brain EVs. Cerebrospinal fluid was extracted from the brain, and EVs were isolated and processed with label-free quantitative proteomic analyses via high-resolution tandem mass spectrometry. Interestingly, circulating EV-localized proteins were differentially expressed based on acute or chronic THC exposure in a sex-specific manner. Taken together, these findings reveal that THC acts in the brain to modulate circulating EV signaling, thereby providing a novel understanding of how exogenous factors can regulate intercellular communication in the brain.


Assuntos
Encéfalo , Dronabinol , Vesículas Extracelulares , Proteômica , Dronabinol/farmacologia , Dronabinol/administração & dosagem , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Masculino , Feminino , Ratos , Proteômica/métodos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ratos Sprague-Dawley , Administração por Inalação , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Transdução de Sinais/efeitos dos fármacos
3.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464047

RESUMO

Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and non-SHH group3 subtypes. MAGMAS (Mitochondrial Associated Granulocyte Macrophage colony-stimulating factor Signaling molecules) encode for mitochondrial import inner membrane translocase subunit and is responsible for translocation of matrix proteins across the inner membrane. We previously reported that a small molecule MAGMAS inhibitor, BT9, decreases cell proliferation, migration, and oxidative phosphorylation in adult glioblastoma cell lines. The aim of our study was to investigate whether the chemotherapeutic effect of BT9 can be extended to pediatric medulloblastoma. Methods: Multiple in vitro assays were performed using human DAOY (SHH activated tp53 mutant) and D425 (non-SHH group 3) cells. The impact of BT9 on cellular growth, death, migration, invasion, and metabolic activity were quantified using MTT assay, TUNEL staining, scratch wound assay, Matrigel invasion chambers, and seahorse assay, respectively. Survival following 50mg/kg BT9 treatment was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. Results: Compared to control, BT9 treatment led to a significant reduction in medulloblastoma cell growth (DAOY, 24hrs IC50: 3.6uM, 48hrs IC50: 2.3uM, 72hrs IC50: 2.1uM; D425 24hrs IC50: 3.4uM, 48hrs IC50: 2.2uM, 72hrs IC50: 2.1uM) and a significant increase in cell death (DAOY, 24hrs p=0.0004, 48hrs p<0.0001; D425, 24hrs p=0.0001, 48hrs p=0.02). In DAOY cells, 3uM BT9 delayed migration, and significantly decreased DAOY and D425 cells invasion (p < 0.0001). Our in vivo study, however, did not extend survival in xenograft mouse model of group3 medulloblastoma compared to vehicle-treated controls. Conclusions: Our in vitro data showed BT9 antitumor efficacy in DAOY and D425 cell lines suggesting that BT9 may represent a promising targeted therapeutic in pediatric medulloblastoma. These data, however, need to be further validated in animal models.

4.
Neurobiol Stress ; 30: 100620, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38486879

RESUMO

Early development is characterized by dynamic transitions in brain maturation, which may be impacted by environmental factors. Here, we sought to determine the effects of social isolation from postweaning and during adolescence on reward behavior and dopaminergic signaling in male rats. Subjects were socially isolated or group housed at postnatal day 21. Three weeks later, extracellular dopamine concentrations were examined in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (NAc) during a feeding bout. Surprisingly, opposing effects were found in which increased mPFC dopamine concentrations were observed in group housed, but not isolated, rats. In stark contrast, increased dopamine levels were found in the NAc of isolated, but not group housed, rats. Moreover, the absence of an effect in the mPFC of the isolated rats could not be reversed by subsequent group housing, demonstrating the remarkable long-term effects on dopamine signaling dynamics. When provided a highly palatable food, the isolated subjects exhibited a dramatic increase in mPFC dopamine levels when the chocolate was novel, but no effects following chronic chocolate consumption. In contrast, the group housed subjects showed significantly increased dopamine levels only with chronic chocolate consumption. The dopamine changes were correlated with differences in behavioral measures. Importantly, the deficit in reward-related behavior during isolation could be reversed by microinjection of either dopamine or cocaine into the mPFC. Together, these data provide evidence that social isolation from postweaning and during adolescence alters reward-induced dopamine levels in a brain region-specific manner, which has important functional implications for reward-related behavior.

5.
Neuropharmacology ; 246: 109833, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176534

RESUMO

Cigarette smoking remains a leading cause of preventable disease and death worldwide. Due to the devastating negative health effects of smoking, many users attempt to quit, but few are successful in the long-term. Thus, there is a critical need for novel therapeutic approaches. In these investigations, we sought to examine whether cannabidiol (CBD) has the potential to be repurposed as a nicotine cessation therapeutic. In the first study, male and female mice were trained to respond for intravenous nicotine infusions at either a low or moderate nicotine dose and then were pretreated with CBD prior to their drug-taking session. We found that CBD produced a significant decrease in the number of nicotine rewards earned, and this effect was evidenced across CBD doses and with both the low and moderate levels of nicotine intake. These effects on drug intake were not due to general motor-related effects, since mice self-administering food pellets did not alter their behavior with CBD administration. The potential effects of CBD in mitigating nicotine withdrawal symptoms were then investigated. We found that CBD attenuated the somatic signs of nicotine withdrawal and prevented nicotine's hyperalgesia-inducing effects. Taken together, these results demonstrate that modulation of cannabinoid signaling may be a viable therapeutic option as a smoking cessation aid.


Assuntos
Canabidiol , Abandono do Hábito de Fumar , Síndrome de Abstinência a Substâncias , Camundongos , Masculino , Feminino , Animais , Nicotina , Canabidiol/uso terapêutico , Fumar , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Abandono do Hábito de Fumar/métodos
6.
J Neurosci ; 43(48): 8259-8270, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37821229

RESUMO

The recent increase in the use of nicotine products by teenagers has revealed an urgent need to better understand the impact of nicotine on the adolescent brain. Here, we sought to examine the actions of extracellular ATP as a neurotransmitter and to investigate whether ATP and nicotinic signaling interact during adolescence. With the GRABATP (G-protein-coupled receptor activation-based ATP sensor), we first demonstrated that nicotine induces extracellular ATP release in the medial habenula, a brain region involved in nicotine aversion and withdrawal. Using patch-clamp electrophysiology, we then demonstrated that activation of the ATP receptors P2X or P2Y1 increases the neuronal firing of cholinergic neurons. Surprisingly, contrasting interactive effects were observed with nicotine exposure. For the P2X receptor, activation had no observable effect on acute nicotine-mediated activity, but during abstinence after 10 d of nicotine exposure, coexposure to nicotine and the P2X agonist potentiated neuronal activity in female, but not male, neurons. For P2Y1 signaling, a potentiated effect of the agonist and nicotine was observed with acute exposure, but not following extended nicotine exposure. These data reveal a complex interactive effect between nicotinic and ATP signaling in the adolescent brain and provide mechanistic insights into extracellular ATP signaling with sex-specific alterations of neuronal responses based on prior drug exposure.SIGNIFICANCE STATEMENT In these studies, it was discovered that nicotine induces extracellular ATP release in the medial habenula and subsequent activation of the ATP purinergic receptors increases habenular cholinergic neuronal firing in the adolescent brain. Interestingly, following extended nicotine exposure, nicotine was found to alter the interplay between purinergic and nicotinic signaling in a sex-specific manner. Together, these studies provide a novel understanding for the role of extracellular ATP in mediating habenular activity and reveal how nicotine exposure during adolescence alters these signaling mechanisms, which has important implications given the high incidence of e-cigarette/vape use by youth.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Habenula , Receptores Purinérgicos P2 , Masculino , Adolescente , Feminino , Humanos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Transmissão Sináptica , Neurônios Colinérgicos , Receptores Purinérgicos P2/fisiologia , Trifosfato de Adenosina/farmacologia
7.
Front Psychiatry ; 14: 1134079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645635

RESUMO

Electronic cigarette use has dramatically increased over the last decade. With this recent technological development and wide range of constituents in various products, putative adverse effects on the brain and body have been largely unexplored. Here, we review current evidence linking electronic nicotine cigarette use with potential health consequences and provide evidence supporting an association between drug use and depression in humans. We also examine the biological effects of individual constituents in electronic cigarette aerosols, which include labeled ingredients, such as propylene glycol, vegetable glycerin, nicotine, and flavorants, as well as unlabeled ingredients found in the aerosols, such as carbonyls and heavy metals. Lastly, we examine the effects of electronic cigarette use on endogenous metabolism via changes in cytochrome P450 enzymes, which can thereby impact therapeutic outcomes. While the current evidence offers insight into the potential effects of electronic cigarette use on biological processes, further studies are necessary to determine the long-term clinical relevance of aerosol inhalation.

8.
bioRxiv ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37398219

RESUMO

Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that have the same topology as the cell, are enriched in selected exosome cargo proteins, and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the exomap1 transgenic mouse model. In response to Cre recombinase, exomap1 mice express HsCD81mNG, a fusion protein between human CD81, the most highly enriched exosome protein yet described, and the bright green fluorescent protein mNeonGreen. As expected, cell type-specific expression of Cre induced the cell type-specific expression of HsCD81mNG in diverse cell types, correctly localized HsCD81mNG to the plasma membrane, and selectively loaded HsCD81mNG into secreted vesicles that have the size (~80 nm), topology (outside out), and content (presence of mouse exosome markers) of exosomes. Furthermore, mouse cells expressing HsCD81mNG released HsCD81mNG-marked exosomes into blood and other biofluids. Using high-resolution, single-exosome analysis by quantitative single molecule localization microscopy, we show here that that hepatocytes contribute ~15% of the blood exosome population whereas neurons contribute <1% of blood exosomes. These estimates of cell type-specific contributions to blood EV population are consistent with the porosity of liver sinusoidal endothelial cells to particles of ~50-300 nm in diameter, as well as with the impermeability of blood-brain and blood-neuron barriers to particles >5 nm in size. Taken together, these results establish the exomap1 mouse as a useful tool for in vivo studies of exosome biology, and for mapping cell type-specific contributions to biofluid exosome populations. In addition, our data confirm that CD81 is a highly-specific marker for exosomes and is not enriched in the larger microvesicle class of EVs.

9.
Pharmacol Res ; 187: 106600, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481259

RESUMO

Passive aerosol exposure to Δ9-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes. We used liquid chromatography/tandem mass spectrometry to quantify the drug and its first-pass metabolites - 11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC) - in nasal mucosa, lungs, plasma, and brain (olfactory bulb and cerebellum) at various time points after exposure. Apparent maximal THC concentration and area under the curve were ∼5 times higher in nasal mucosa than in lungs and 50-80 times higher than in plasma. Concentrations of 11-OH-THC were also greater in nasal mucosa and lungs than other tissues, whereas 11-COOH-THC was consistently undetectable. Experiments with microsomal preparations confirmed local metabolism of THC into 11-OH-THC (not 11-COOH-THC) in nasal mucosa and lungs. Finally, whole-body exposure to THC deposited substantial amounts of THC (∼150 mg/g) on fur but suppressed post-exposure grooming in rats of both sexes. The results indicate that THC absorption and metabolism in nasal mucosa and lungs, but probably not gastrointestinal tract, contribute to the pharmacological effects of aerosolized THC in male and female rats.


Assuntos
Cannabis , Dronabinol , Adolescente , Humanos , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Espectrometria de Massas , Aerossóis/metabolismo
10.
Extracell Vesicle ; 22023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39372847

RESUMO

Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that are enriched in exosome marker proteins and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the Exomap1 transgenic mouse, which in response to Cre recombinase expresses the most highly enriched exosomal marker protein known, human CD81, fused to mNeonGreen (HsCD81mNG), and prior to Cre expresses a mitochondrial red fluorescent protein. Validation of the exomap1 mouse with eight distinct Cre drivers demonstrated that HsCD81mNG was expressed only in response to Cre, that murine cells correctly localized HsCD81mNG to the plasma membrane, and that this led to the secretion of HsCD81mNG in EVs that had the size (~70-80 nm), topology, and composition of exosomes. Furthermore, cell type-specific activation of the exomap1 transgene allowed us to use quantitative single molecule localization microscopy to calculate the cell type-specific contribution to biofluid exosome populations. Specifically, we show that neurons contribute ~1% to plasma and cerebrospinal fluid exosome populations whereas hepatocytes contribute ~15% to plasma exosome populations, numbers that reflect the known vascular permeabilities of brain and liver. These observations validate the use of Exomap1 mouse models for in vivo studies of exosome biology.

11.
Nat Rev Dis Primers ; 8(1): 19, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332148

RESUMO

Tobacco smoking is a major determinant of preventable morbidity and mortality worldwide. More than a billion people smoke, and without major increases in cessation, at least half will die prematurely from tobacco-related complications. In addition, people who smoke have a significant reduction in their quality of life. Neurobiological findings have identified the mechanisms by which nicotine in tobacco affects the brain reward system and causes addiction. These brain changes contribute to the maintenance of nicotine or tobacco use despite knowledge of its negative consequences, a hallmark of addiction. Effective approaches to screen, prevent and treat tobacco use can be widely implemented to limit tobacco's effect on individuals and society. The effectiveness of psychosocial and pharmacological interventions in helping people quit smoking has been demonstrated. As the majority of people who smoke ultimately relapse, it is important to enhance the reach of available interventions and to continue to develop novel interventions. These efforts associated with innovative policy regulations (aimed at reducing nicotine content or eliminating tobacco products) have the potential to reduce the prevalence of tobacco and nicotine use and their enormous adverse impact on population health.


Assuntos
Abandono do Hábito de Fumar , Produtos do Tabaco , Humanos , Nicotina/efeitos adversos , Qualidade de Vida , Nicotiana , Uso de Tabaco/efeitos adversos , Dispositivos para o Abandono do Uso de Tabaco
12.
Nicotine Tob Res ; 24(8): 1150-1160, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35090174

RESUMO

INTRODUCTION: Although there has been a decrease in the prevalence of tobacco smoking, exposure to nicotine during pregnancy remains a substantial problem worldwide. Further, given the recent escalation in e-cigarette use and legalization of cannabis, it has become essential to understand the effects of nicotine and cannabinoid co-exposure during early developmental stages. AIMS AND METHODS: We systematically examined the effects of nicotine and/or THC prenatal exposure on cognitive behaviors in male and female offspring. Dams were exposed to nicotine vape or vehicle, and oral edible THC or vehicle, throughout pregnancy. Adolescent offspring were then tested in the prepulse inhibition test, novel object recognition task, and novelty suppressed feeding task. RESULTS: At birth, pups from mothers exposed to nicotine vape or oral THC exhibited reduced body weight, compared to control pups. Prenatal nicotine vape exposure resulted in a decreased baseline startle reactivity in adolescent male and female rats, and in females, enhanced sensorimotor gating in the prepulse inhibition test. Prenatal nicotine and THC co-exposure resulted in significant deficits in the prepulse inhibition test in males. Deficits in short-term memory were also found in males prenatally exposed to THC, either alone or with nicotine co-exposure, and in females exposed to THC alone. Finally, in males, a modest increase in anxiety-associated behaviors was found with THC or nicotine exposure in the latency to approach a novel palatable food. CONCLUSIONS: These studies demonstrate differential effects of prenatal exposure to e-cigarette nicotine vape and/or edible THC on cognitive function, with differing effects within male and female groups. IMPLICATIONS: These studies demonstrate an impact of nicotine, THC, or co-exposure during early developmental stages in utero on behavioral outcomes in adolescence. These findings have important translational implications given the continued use of nicotine and THC containing products by pregnant women worldwide, which can be applied to support healthcare and policy efforts restricting nicotine and THC use during pregnancy.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Efeitos Tardios da Exposição Pré-Natal , Animais , Cognição , Dronabinol/farmacologia , Feminino , Humanos , Masculino , Nicotina/efeitos adversos , Gravidez , Ratos
13.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-34876472

RESUMO

Cholinergic projections from the medial habenula (MHb) to the interpeduncular nucleus (IPN) have been studied for their complex contributions to nicotine addiction and have been implicated in nicotine reinforcement, aversion, and withdrawal. While it has been established that MHb cholinergic projections corelease glutamate, no direct evidence has demonstrated a role for this glutamate projection in nicotine consumption. In the present study, a novel floxed Slc17a7 [vesicular glutamate transporter 1 (VGLUT1)] mouse was generated and used to create conditional knock-out (cKO) mice that lack VGLUT1 in MHb cholinergic neurons. Loss of Slc17a7 expression in ventral MHb cholinergic neurons was validated using fluorescent in situ hybridization, and immunohistochemistry was used to demonstrate a corresponding reduction of VGLUT1 protein in cholinergic terminals in the IPN. We also used optogenetics-assisted electrophysiology to evoke EPSCs in IPN and observed a reduction of glutamatergic currents in the cKO, supporting the functional disruption of VGLUT1 in MHb to IPN synapses. cKO mice exhibited no gross phenotypic abnormalities and displayed normal thigmotaxis and locomotor behavior in the open-field assay. When trained to lever press for food, there was no difference between control and cKO. However, when tested in a nicotine self-administration procedure, we found that the loss of VGLUT1-mediated glutamate corelease led to increased responding for nicotine. These findings indicate that glutamate corelease from ventral MHb cholinergic neurons opposes nicotine self-administration, and provide additional support for targeting this synapse to develop potential treatments for nicotine addiction.


Assuntos
Habenula , Núcleo Interpeduncular , Animais , Hibridização in Situ Fluorescente , Camundongos , Nicotina , Agonistas Nicotínicos
14.
Front Behav Neurosci ; 15: 703748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803621

RESUMO

Negative allosteric modulators, such as lynx1 and lynx2, directly interact with nicotinic acetylcholine receptors (nAChRs). The nAChRs are integral to cholinergic signaling in the brain and have been shown to mediate different aspects of cognitive function. Given the interaction between lynx proteins and these receptors, we examined whether these endogenous negative allosteric modulators are involved in cognitive behaviors associated with cholinergic function. We found both cell-specific and overlapping expression patterns of lynx1 and lynx2 mRNA in brain regions associated with cognition, learning, memory, and sensorimotor processing, including the prefrontal cortex (PFC), cingulate cortex, septum, hippocampus, amygdala, striatum, and pontine nuclei. Since lynx proteins are thought to play a role in conditioned associations and given the expression patterns across brain regions, we first assessed whether lynx knockout mice would differ in a cognitive flexibility task. We found no deficits in reversal learning in either the lynx1-/- or lynx2-/- knockout mice. Thereafter, sensorimotor gating was examined with the prepulse inhibition (PPI) assessment. Interestingly, we found that both male and female lynx1-/- mice exhibited a deficit in the PPI behavioral response. Given the comparable expression of lynx2 in regions involved in sensorimotor gating, we then examined whether removal of the lynx2 protein would lead to similar behavioral effects. Unexpectedly, we found that while male lynx2-/- mice exhibited a decrease in the baseline startle response, no differences were found in sensorimotor gating for either male or female lynx2-/- mice. Taken together, these studies provide insight into the expression patterns of lynx1 and lynx2 across multiple brain regions and illustrate the modulatory effects of the lynx1 protein in sensorimotor gating.

15.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33945510

RESUMO

Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.


Assuntos
Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Doença de Huntington/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Grânulos Citoplasmáticos/patologia , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , Hipocampo/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/patologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Córtex Pré-Frontal/patologia , Transporte Proteico/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética
16.
Neuropharmacology ; 190: 108568, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878302

RESUMO

The low sensitivity (α4)3(ß2)2 (LS) and high sensitivity (α4)2(ß2)3 (HS) nAChR isoforms may contribute to a variety of brain functions, pathophysiological processes, and pharmacological effects associated with nicotine use. In this study, we examined the contributions of the LS and HS α4ß2 nAChR isoforms in nicotine self-administration, withdrawal symptoms, antinociceptive and hypothermic effects. We utilized two nAChR positive allosteric modulators (PAMs): desformylflustrabromine (dFBr), a PAM of both the LS and HS α4ß2 nAChRs, and CMPI, a PAM selective for the LS nAChR. We found that dFBr, but not CMPI, decreased intravenous nicotine self-administration in male mice in a dose-dependent manner. Unlike dFBr, which fully reverses somatic and affective symptoms of nicotine withdrawal, CMPI at doses up to 15 mg/kg in male mice only partially reduced nicotine withdrawal-induced somatic signs, anxiety-like behavior and sucrose preference, but had no effects on nicotine withdrawal-induced hyperalgesia. These results indicate that potentiation of HS α4ß2 nAChRs is necessary to modulate nicotine's reinforcing properties that underlie nicotine intake and to reverse nicotine withdrawal symptoms that influence nicotine abstinence. In contrast, both dFBr and CMPI enhanced nicotine's hypothermic effect and reduced nicotine's antinociceptive effects in male mice. Therefore, these results indicate a more prevalent role of HS α4ß2 nAChR isoforms in mediating various behavioral effects associated with nicotine, whereas the LS α4ß2 nAChR isoform has a limited role in mediating body temperature and nociceptive responses. These findings will facilitate the development of more selective, efficacious, and safe nAChR-based therapeutics for nicotine addiction treatment.


Assuntos
Comportamento Animal/efeitos dos fármacos , Hidrocarbonetos Bromados/farmacologia , Alcaloides Indólicos/farmacologia , Isoxazóis/farmacologia , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Pirazóis/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/metabolismo , Tabagismo/metabolismo , Regulação Alostérica , Animais , Camundongos , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Isoformas de Proteínas , Receptores Nicotínicos/metabolismo , Autoadministração , Síndrome de Abstinência a Substâncias/etiologia
17.
Environ Toxicol Pharmacol ; 86: 103656, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33838329

RESUMO

Evidence in humans suggests a correlation between nicotine smoking and severe respiratory symptoms with COVID-19 infection. In lung tissue, angiotensin-converting enzyme 2 (ACE2) appears to mechanistically underlie viral entry. Here, we investigated whether e-cigarette vapor inhalation alters ACE2 and nicotinic acetylcholine receptor (nAChR) expression in male and female mice. In male lung, nicotine vapor inhalation induced a significant increase in ACE2 mRNA and protein, but surprisingly, these differences were not found in females. Further, both vehicle and nicotine vapor inhalation downregulated α5 nAChR subunits in both sexes, while differences were not found in α7 nAChR subunit expression. Finally, blood ACE2 levels did not differ with exposure, indicating that blood sampling is not a sufficient indicator of lung ACE2 changes. Together, these data indicate a direct link between e-cigarette vaping and increased ACE2 expression in male lung tissue, which thereby reveals an underlying mechanism of increased vulnerability to coronavirus infection in individuals vaping nicotine.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , COVID-19/epidemiologia , Sistemas Eletrônicos de Liberação de Nicotina , Pulmão/enzimologia , Vaping/efeitos adversos , Enzima de Conversão de Angiotensina 2/sangue , Enzima de Conversão de Angiotensina 2/genética , Animais , DNA Complementar/biossíntese , Feminino , Pulmão/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/administração & dosagem , Nicotina/farmacologia , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/farmacologia , Receptores Nicotínicos/biossíntese , Caracteres Sexuais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
18.
Front Behav Neurosci ; 15: 649129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828466

RESUMO

The cholinergic system plays a crucial role in nervous system function with important effects on developmental processes, cognition, attention, motivation, reward, learning, and memory. Nicotine, the reinforcing component of tobacco and e-cigarettes, directly acts on the cholinergic system by targeting nicotinic acetylcholine receptors (nAChRs) in the brain. Activation of nAChRs leads to a multitude of immediate and long-lasting effects in specific cellular populations, thereby affecting the addictive properties of the drug. In addition to the direct actions of nicotine in binding to and opening nAChRs, the subsequent activation of circuits and downstream signaling cascades leads to a wide range of changes in gene expression, which can subsequently alter further behavioral expression. In this review, we provide an overview of the actions of nicotine that lead to changes in gene expression and further highlight evidence supporting how these changes can often be bidirectional, thereby inducing subsequent changes in behaviors associated with further drug intake.

19.
Addict Biol ; 26(6): e13024, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33624410

RESUMO

E-cigarettes, which deliver vaporized nicotine, have dramatically risen in popularity in recent years, despite many unanswered questions about safety, efficacy in reducing dependence, and overall impact on public health. Other factors, such as sex, also play an important role in determining behavioral and neurochemical responses to drugs of abuse. In these studies, we sought to develop a protocol for vaporized e-cigarette nicotine self-administration in rats, as a foundation to better understand the differing effects of nicotine exposure routes on behavior and physiological function. We report a novel method that elicits robust nicotine vapor self-administration in male and female rats. Our findings indicate that 5-mg/ml nicotine vape solution provides a high level of consistency in lever-pressing behavior for both males and females. Moreover, in male rats, we find that such e-cigarette nicotine vapor induces similar blood levels of nicotine's main metabolite, cotinine, as that found with intravenous nicotine self-administration. Therefore, the breathing pattern during vapor exposure in males leads to similar levels of titrated nicotine intake as with intravenous nicotine self-administration. Interestingly, a differential effect was found in the females, in which the same conditions of vapor exposure led to decreased cotinine levels with vapor compared to intravenous self-administration. Finally, differences in nicotine-mediated locomotion provide further support of the physiological effects of e-cigarette vapor inhalation. Taken together, our findings reveal important sex differences in nicotine intake based on the route of exposure, and we further establish a protocol for nicotine vapor self-administration in rats.


Assuntos
Vapor do Cigarro Eletrônico/farmacologia , Nicotina/farmacologia , Animais , Cotinina/sangue , Comportamento de Procura de Droga/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Locomoção/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Autoadministração , Fatores Sexuais
20.
Addict Biol ; 26(1): e12859, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782218

RESUMO

Nicotine use remains highly prevalent with tobacco and e-cigarette products consumed worldwide. However, increasing evidence of transgenerational epigenetic inheritance suggests that nicotine use may alter behavior and neurobiology in subsequent generations. We tested the effects of chronic paternal nicotine exposure in C57BL6/J mice on fear conditioning in F1 and F2 offspring, as well as conditioned fear extinction and spontaneous recovery, nicotine self-administration, hippocampal cholinergic functioning, RNA expression, and DNA methylation in F1 offspring. Paternal nicotine exposure was associated with enhanced contextual and cued fear conditioning and spontaneous recovery of extinguished fear memories. Further, nicotine reinforcement was reduced in nicotine-sired mice, as assessed in a self-administration paradigm. These behavioral phenotypes were coupled with altered response to nicotine, upregulated hippocampal nicotinic acetylcholine receptor binding, reduced evoked hippocampal cholinergic currents, and altered methylation and expression of hippocampal genes related to neural development and plasticity. Gene expression analysis suggests multigenerational effects on broader gene networks potentially involved in neuroplasticity and mental disorders. The changes in fear conditioning similarly suggest phenotypes analogous to anxiety disorders similar to post-traumatic stress.


Assuntos
Medo/efeitos dos fármacos , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Nicotina/farmacologia , Exposição Paterna/efeitos adversos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Sinais (Psicologia) , Extinção Psicológica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA