RESUMO
DNA double-strand break (DSB) repair by homologous recombination is confined to the S and G2 phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G1 phase and non-cycling quiescent (G0) cells where DSBs are predominately repaired by non-homologous end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end resection at DSBs in G0 murine and human cells. A whole genome CRISPR/Cas9 screen revealed the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection in G0 cells. In agreement, depletion of FBXL12, which promotes ubiquitylation and removal of the KU70/KU80 subunits of DNA-PK from DSBs, promotes even more extensive resection in G0 cells. In contrast, a requirement for DNA-PK in promoting DNA end resection in proliferating cells at the G1 or G2 phase of the cell cycle was not observed. Our findings establish that DNA-PK uniquely promotes DNA end resection in G0, but not in G1 or G2 phase cells, which has important implications for DNA DSB repair in quiescent cells.
Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas F-Box , Animais , DNA/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteínas F-Box/genética , Fase G1/genética , Humanos , CamundongosRESUMO
DNA double-strand break (DSB) repair by homologous recombination (HR) is thought to be restricted to the S- and G2- phases of the cell cycle in part due to 53BP1 antagonizing DNA end resection in G1-phase and non-cycling quiescent (G0) cells. Here, we show that LIN37, a component of the DREAM transcriptional repressor, functions in a 53BP1-independent manner to prevent DNA end resection and HR in G0 cells. Loss of LIN37 leads to the expression of HR proteins, including BRCA1, BRCA2, PALB2, and RAD51, and promotes DNA end resection in G0 cells even in the presence of 53BP1. In contrast to 53BP1-deficiency, DNA end resection in LIN37-deficient G0 cells depends on BRCA1 and leads to RAD51 filament formation and HR. LIN37 is not required to protect DNA ends in cycling cells at G1-phase. Thus, LIN37 regulates a novel 53BP1-independent cell phase-specific DNA end protection pathway that functions uniquely in quiescent cells.
Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Rad51 Recombinase/metabolismo , Transativadores/metabolismo , Proteína BRCA1/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Fase G1 , Fase G2 , Recombinação Homóloga , Humanos , Fase S , Transativadores/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismoRESUMO
After a DNA double-strand break, cells utilize either non-homologous end joining or homologous recombination to repair the broken DNA ends. Homologous recombination requires extensive nucleolytic processing of one of the DNA strands, resulting in long stretches of 3' single-strand DNA overhangs. Typically, single-stranded DNA is measured using immunofluorescence microscopy to image the foci of replication protein A, a single-stranded DNA-binding protein. Microscopy analysis of bromodeoxyuridine foci under nondenaturing conditions has also been used to measure single-stranded DNA. Here, we describe a proximity ligation assay which uses genome-wide bromodeoxyuridine incorporation to label single-stranded DNA in order to measure the association of a protein of interest with single-stranded DNA. This method is advantageous over traditional foci analysis because it is more direct and specific than traditional foci co-localization microscopy methods, uses only one color channel, and can reveal protein-single-stranded DNA interactions that are rare and potentially undetectable using traditional microscopy methods. We show here the association of replication protein A and bromodeoxyuridine as proof-of-concept.
RESUMO
Here, we use ChAP-MS (chromatin affinity purification with mass spectrometry), for the affinity purification of a sequence-specific single-copy endogenous chromosomal locus containing a DNA double-strand break (DSB). We found multiple new histone post-translational modifications enriched on chromatin bearing a DSB from budding yeast. One of these, methylation of histone H3 on lysine 125, has not previously been reported. Among over 100 novel proteins enriched at a DSB were the phosphatase Sit4, the RNA pol II degradation factor Def1, the mRNA export protein Yra1 and the HECT E3 ligase Tom1. Each of these proteins was required for resistance to radiomimetics, and many were required for resistance to heat, which we show here to cause a defect in DSB repair in yeast. Yra1 and Def1 were required for DSB repair per se, while Sit4 was required for rapid inactivation of the DNA damage checkpoint after DSB repair. Thus, our unbiased proteomics approach has led to the unexpected discovery of novel roles for these and other proteins in the DNA damage response.