Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 47(1): 425-432, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30733342

RESUMO

Spermatogenesis is central to successful sexual reproduction, producing large numbers of haploid motile male gametes. Throughout this process, a series of equational and reductional chromosome segregation precedes radical repackaging of the haploid genome. Faithful chromosome segregation is thus crucial, as is an ordered spatio-temporal 'dance' of packing a large amount of chromatin into a very small space. Ergo, when the process goes wrong, this is associated with an improper chromosome number, nuclear position and/or chromatin damage in the sperm head. Generally, screening for overall DNA damage is relatively commonplace in clinics, but aneuploidy assessment is less so and nuclear organisation studies form the basis of academic research. Several studies have focussed on the role of chromosome segregation, nuclear organisation and analysis of sperm morphometry in human subfertility observing significant alterations in some cases, especially of the sex chromosomes. Importantly, sperm DNA damage has been associated with infertility and both extrinsic (e.g. lifestyle) and intrinsic (e.g. reactive oxygen species levels) factors, and while some DNA-strand breaks are repaired, unexpected breaks can cause differential chromatin packaging and further breakage. A 'healthy' sperm nucleus (with the right number of chromosomes, nuclear organisation and minimal DNA damage) is thus an essential part of reproduction. The purpose of this review is to summarise state of the art in the fields of sperm aneuploidy assessment, nuclear organisation and DNA damage studies.


Assuntos
Núcleo Celular/metabolismo , Segregação de Cromossomos , Infertilidade Masculina/genética , Aneuploidia , Dano ao DNA , Epigênese Genética , Humanos , Masculino , Espermatogênese , Espermatozoides/ultraestrutura
2.
Reprod Biol ; 18(3): 203-211, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30196809

RESUMO

Human assisted reproductive technology procedures are routinely performed in clinics globally, and some of these approaches are now common in other mammals such as cattle. This is currently not the case in pigs. Given that the global population is expected to increase by over two billion people between now and 2050, the demand for meat will also undoubtedly increase. With this in mind, a more sustainable way to produce livestock; increasing productivity and implementing methods that will lead to faster genetic selection, is imperative. The establishment of routine and production scale pig embryo in vitro production could be a solution to this problem. Producers would be able to increase the overall number of offspring born, animal transportation would be more straightforward and in vitro produced embryos could be produced from the gametes of selected elite. Here we review the most recent developments in pig embryology, outline the current barriers and key challenges that exist, and outline research priorities to surmount these difficulties.


Assuntos
Blastocisto/fisiologia , Técnicas de Cultura Embrionária/veterinária , Fertilização in vitro/veterinária , Animais , Criopreservação/veterinária , Técnicas de Cultura Embrionária/tendências , Feminino , Fertilização in vitro/tendências , Suínos
5.
BMC Genomics ; 15: 1060, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25496766

RESUMO

BACKGROUND: The availability of multiple avian genome sequence assemblies greatly improves our ability to define overall genome organization and reconstruct evolutionary changes. In birds, this has previously been impeded by a near intractable karyotype and relied almost exclusively on comparative molecular cytogenetics of only the largest chromosomes. Here, novel whole genome sequence information from 21 avian genome sequences (most newly assembled) made available on an interactive browser (Evolution Highway) was analyzed. RESULTS: Focusing on the six best-assembled genomes allowed us to assemble a putative karyotype of the dinosaur ancestor for each chromosome. Reconstructing evolutionary events that led to each species' genome organization, we determined that the fastest rate of change occurred in the zebra finch and budgerigar, consistent with rapid speciation events in the Passeriformes and Psittaciformes. Intra- and interchromosomal changes were explained most parsimoniously by a series of inversions and translocations respectively, with breakpoint reuse being commonplace. Analyzing chicken and zebra finch, we found little evidence to support the hypothesis of an association of evolutionary breakpoint regions with recombination hotspots but some evidence to support the hypothesis that microchromosomes largely represent conserved blocks of synteny in the majority of the 21 species analyzed. All but one species showed the expected number of microchromosomal rearrangements predicted by the haploid chromosome count. Ostrich, however, appeared to retain an overall karyotype structure of 2n=80 despite undergoing a large number (26) of hitherto un-described interchromosomal changes. CONCLUSIONS: Results suggest that mechanisms exist to preserve a static overall avian karyotype/genomic structure, including the microchromosomes, with widespread interchromosomal change occurring rarely (e.g., in ostrich and budgerigar lineages). Of the species analyzed, the chicken lineage appeared to have undergone the fewest changes compared to the dinosaur ancestor.


Assuntos
Galinhas/genética , Dinossauros/genética , Evolução Molecular , Genômica , Animais , Coloração Cromossômica , Ontologia Genética , Hibridização in Situ Fluorescente , Cariótipo , Passeriformes/genética , Recombinação Genética , Sintenia
6.
BMC Genomics ; 14: 784, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225222

RESUMO

BACKGROUND: Obesity, excess fat tissue in the body, can underlie a variety of medical complaints including heart disease, stroke and cancer. The pig is an excellent model organism for the study of various human disorders, including obesity, as well as being the foremost agricultural species. In order to identify genetic variants associated with fatness, we used a selective genomic approach sampling DNA from animals at the extreme ends of the fat and lean spectrum using estimated breeding values derived from a total population size of over 70,000 animals. DNA from 3 breeds (Sire Line Large White, Duroc and a white Pietrain composite line (Titan)) was used to interrogate the Illumina Porcine SNP60 Genotyping Beadchip in order to identify significant associations in terms of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs). RESULTS: By sampling animals at each end of the fat/lean EBV (estimate breeding value) spectrum the whole population could be assessed using less than 300 animals, without losing statistical power. Indeed, several significant SNPs (at the 5% genome wide significance level) were discovered, 4 of these linked to genes with ontologies that had previously been correlated with fatness (NTS, FABP6, SST and NR3C2). Quantitative analysis of the data identified putative CNV regions containing genes whose ontology suggested fatness related functions (MCHR1, PPARα, SLC5A1 and SLC5A4). CONCLUSIONS: Selective genotyping of EBVs at either end of the phenotypic spectrum proved to be a cost effective means of identifying SNPs and CNVs associated with fatness and with estimated major effects in a large population of animals.


Assuntos
Tecido Adiposo , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla , Obesidade/genética , Animais , Cruzamento , Genótipo , Humanos , Obesidade/patologia , Polimorfismo de Nucleotídeo Único , Suínos/genética
7.
BMC Res Notes ; 5: 503, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22974252

RESUMO

BACKGROUND: The ability to transport and store DNA at room temperature in low volumes has the advantage of optimising cost, time and storage space. Blood spots on adapted filter papers are popular for this, with FTA (Flinders Technology Associates) Whatman™TM technology being one of the most recent. Plant material, plasmids, viral particles, bacteria and animal blood have been stored and transported successfully using this technology, however the method of porcine DNA extraction from FTA Whatman™TM cards is a relatively new approach, allowing nucleic acids to be ready for downstream applications such as PCR, whole genome amplification, sequencing and subsequent application to single nucleotide polymorphism microarrays has hitherto been under-explored. FINDINGS: DNA was extracted from FTA Whatman™TM cards (following adaptations of the manufacturer's instructions), whole genome amplified and subsequently analysed to validate the integrity of the DNA for downstream SNP analysis. DNA was successfully extracted from 288/288 samples and amplified by WGA. Allele dropout post WGA, was observed in less than 2% of samples and there was no clear evidence of amplification bias nor contamination. Acceptable call rates on porcine SNP chips were also achieved using DNA extracted and amplified in this way. CONCLUSIONS: DNA extracted from FTA Whatman cards is of a high enough quality and quantity following whole genomic amplification to perform meaningful SNP chip studies.


Assuntos
Sangue , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Sequência de Bases , Primers do DNA , Humanos , Reação em Cadeia da Polimerase
8.
BMC Genomics ; 10: 357, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19656363

RESUMO

BACKGROUND: The availability of the complete chicken (Gallus gallus) genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH) and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, we provided a comprehensive cytogenetic map for the turkey (Meleagris gallopavo) and the first analysis of copy number variants (CNVs) in birds. Here, we extend this approach to the Pekin duck (Anas platyrhynchos), an obvious target for comparative genomic studies due to its agricultural importance and resistance to avian flu. RESULTS: We provide a detailed molecular cytogenetic map of the duck genome through FISH assignment of 155 chicken clones. We identified one inter- and six intrachromosomal rearrangements between chicken and duck macrochromosomes and demonstrated conserved synteny among all microchromosomes analysed. Array comparative genomic hybridisation revealed 32 CNVs, of which 5 overlap previously designated "hotspot" regions between chicken and turkey. CONCLUSION: Our results suggest extensive conservation of avian genomes across 90 million years of evolution in both macro- and microchromosomes. The data on CNVs between chicken and duck extends previous analyses in chicken and turkey and supports the hypotheses that avian genomes contain fewer CNVs than mammalian genomes and that genomes of evolutionarily distant species share regions of copy number variation ("CNV hotspots"). Our results will expedite duck genomics, assist marker development and highlight areas of interest for future evolutionary and functional studies.


Assuntos
Galinhas/genética , Hibridização Genômica Comparativa , Patos/genética , Genômica/métodos , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Evolução Molecular , Dosagem de Genes , Hibridização in Situ Fluorescente , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA