Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(28): e2302445120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399378

RESUMO

Cells regulate gene expression by the specific binding of transcription regulators to cis-regulatory sequences. Pair-wise cooperativity between regulators-whereby two different regulators physically interact and bind DNA in a cooperative manner-is common and permits complex modes of gene regulation. Over evolutionary timescales, the formation of new combinations of regulators represents a major source of phenotypic novelty, facilitating new network structures. How functional, pair-wise cooperative interactions arise between regulators is poorly understood, despite the abundance of examples in extant species. Here, we explore a protein-protein interaction between two ancient transcriptional regulators-the homeodomain protein Matα2 and the MADS box protein Mcm1-that was gained approximately 200 million y ago in a clade of ascomycete yeasts that includes Saccharomyces cerevisiae. By combining deep mutational scanning with a functional selection for cooperative gene expression, we tested millions of possible alternative evolutionary solutions to this interaction interface. The artificially evolved, functional solutions are highly degenerate, with diverse amino acid chemistries permitted at all positions but with widespread epistasis limiting success. Nonetheless, approximately ~45% of the random sequences sampled function as well or better in controlling gene expression than the naturally evolved sequence. From these variants (which are unconstrained by historical contingency), we discern structural rules and epistatic constraints governing the emergence of cooperativity between these two transcriptional regulators. This work provides a mechanistic basis for long-standing observations of transcription network plasticity and highlights the importance of epistasis in the evolution of new protein-protein interactions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Elife ; 72018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198843

RESUMO

Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained cis-regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral cis-regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.


Assuntos
Proteína 1 de Manutenção de Minicromossomo/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Elementos Reguladores de Transcrição/genética , Complexo Shelterina
3.
Proc Natl Acad Sci U S A ; 115(40): E9333-E9342, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30217891

RESUMO

Viable gamete formation requires segregation of homologous chromosomes connected, in most species, by cross-overs. DNA double-strand break (DSB) formation and the resulting cross-overs are regulated at multiple levels to prevent overabundance along chromosomes. Meiotic cells coordinate these events between distant sites, but the physical basis of long-distance chromosomal communication has been unknown. We show that DSB hotspots up to ∼200 kb (∼35 cM) apart form clusters via hotspot-binding proteins Rec25 and Rec27 in fission yeast. Clustering coincides with hotspot competition and interference over similar distances. Without Tel1 (an ATM tumor-suppressor homolog), DSB and crossover interference become negative, reflecting coordinated action along a chromosome. These results indicate that DSB hotspots within a limited chromosomal region and bound by their protein determinants form a clustered structure that, via Tel1, allows only one DSB per region. Such a "roulette" process within clusters explains the observed pattern of crossover interference in fission yeast. Key structural and regulatory components of clusters are phylogenetically conserved, suggesting conservation of this vital regulation. Based on these observations, we propose a model and discuss variations in which clustering and competition between DSB sites leads to DSB interference and in turn produces crossover interference.


Assuntos
Cromossomos Fúngicos/metabolismo , Quebras de DNA de Cadeia Dupla , Meiose , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cromossomos Fúngicos/genética , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
4.
Genetica ; 146(1): 65-74, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29071446

RESUMO

Homologous recombination occurs at a greatly elevated frequency in meiosis compared to mitosis and is initiated by programmed double-strand DNA breaks (DSBs). DSBs do not occur at uniform frequency throughout the genome in most organisms, but occur preferentially at a limited number of sites referred to as hotspots. The location of hotspots have been determined at nucleotide-level resolution in both the budding and fission yeasts, and while several patterns have emerged regarding preferred locations for DSB hotspots, it remains unclear why particular sites experience DSBs at much higher frequency than other sites with seemingly similar properties. Short sequence motifs, which are often sites for binding of transcription factors, are known to be responsible for a number of hotspots. In this study we identified the minimum sequence required for activity of one of such motif identified in a screen of random sequences capable of producing recombination hotspots. The experimentally determined sequence, GGTCTRGACC, closely matches the previously inferred sequence. Full hotspot activity requires an effective sequence length of 9.5 bp, whereas moderate activity requires an effective sequence length of approximately 8.2 bp and shows significant association with DSB hotspots. In combination with our previous work, this result is consistent with a large number of different sequence motifs capable of producing recombination hotspots, and supports a model in which hotspots can be rapidly regenerated by mutation as they are lost through recombination.


Assuntos
Meiose/genética , Recombinação Genética , Schizosaccharomyces/genética , DNA Fúngico/química , Motivos de Nucleotídeos
5.
Sci Rep ; 7(1): 1393, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469148

RESUMO

During Schizosaccharomyces pombe meiotic prophase, homologous chromosomes are co-aligned by linear elements (LinEs) analogous to the axial elements of the synaptonemal complex (SC) in other organisms. LinE proteins also promote the formation of meiotic DNA double-strand breaks (DSBs), the precursors of cross-overs. Rec10 is required for essentially all DSBs and recombination, and three others (Rec25, Rec27, and Mug20) are protein determinants of DSB hotspots - they bind DSB hotspots with high specificity and are required for DSB formation there. These four LinE proteins co-localize in the nucleus in an interdependent way, suggesting they form a complex. We used random mutagenesis to uncover recombination-deficient missense mutants with novel properties. Some missense mutations changed essential residues conserved among Schizosaccharomyces species. DSB formation, gene conversion, and crossing-over were coordinately reduced in the mutants tested. Based on our mutant analysis, we revised the rec27 open reading frame: the new start codon is in the previously annotated first intron. Genetic and fluorescence-microscopy assays indicated that the Rec10 N- and C-terminal regions have complex interactions with Rec25. These mutants are a valuable resource to elucidate further how LinE proteins and the related SCs of other species regulate meiotic DSB formation to form crossovers crucial for meiosis.


Assuntos
Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Meiose , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ciclo Celular/isolamento & purificação , Conversão Gênica , Íntrons , Mutação de Sentido Incorreto , Proteínas Nucleares/isolamento & purificação , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/isolamento & purificação
6.
Methods Mol Biol ; 1471: 25-49, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28349389

RESUMO

The fission yeast Schizosaccharomyces pombe is especially well suited for studying meiosis in molecular detail. Experiments with S. pombe strains that undergo a nearly synchronous meiosis-at variable temperatures-have elucidated the mechanisms of meiotic progression and the proteins that are involved. For example, studies focused on the initiation of meiotic recombination by programmed DNA double-strand breaks (DSBs) have proven exceptionally informative. In meiosis, some regions of DNA have more frequent DSBs than the surrounding regions. These DSB hotspots can be visualized by Southern blot hybridization of restriction fragments ranging from kilobases (kb) to megabases (Mb) in size. More recently, the benefits of genome-wide analysis to map the distribution and frequency of meiotic DSBs have been attained, with resolution down to the nucleotide level. Infrequent, non-hotspot DSBs previously not detectable have been observed, creating a better understanding of how recombination is regulated. Additional genome-wide analyses have shown proteins that bind specifically to DSB hotspots, providing insight into how the DSB initiation complex functions. We describe here detailed methods for achieving these results.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Imunoprecipitação da Cromatina/métodos , Genoma Fúngico , Estudo de Associação Genômica Ampla , Hibridização In Situ/métodos , Proteínas de Schizosaccharomyces pombe/genética
7.
Genome Res ; 24(10): 1650-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024163

RESUMO

Fission yeast Rec12 (Spo11 homolog) initiates meiotic recombination by forming developmentally programmed DNA double-strand breaks (DSBs). DSB distributions influence patterns of heredity and genome evolution, but the basis of the highly nonrandom choice of Rec12 cleavage sites is poorly understood, largely because available maps are of relatively low resolution and sensitivity. Here, we determined DSBs genome-wide at near-nucleotide resolution by sequencing the oligonucleotides attached to Rec12 following DNA cleavage. The single oligonucleotide size class allowed us to deeply sample all break events. We find strong evidence across the genome for differential DSB repair accounting for crossover invariance (constant cM/kb in spite of DSB hotspots). Surprisingly, about half of all crossovers occur in regions where DSBs occur at low frequency and are widely dispersed in location from cell to cell. These previously undetected, low-level DSBs thus play an outsized and crucial role in meiosis. We further find that the influence of underlying nucleotide sequence and chromosomal architecture differs in multiple ways from that in budding yeast. DSBs are not strongly restricted to nucleosome-depleted regions, as they are in budding yeast, but are nevertheless spatially influenced by chromatin structure. Our analyses demonstrate that evolutionarily fluid factors contribute to crossover initiation and regulation.


Assuntos
Troca Genética , Quebras de DNA de Cadeia Dupla , Meiose , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Cromatina/metabolismo , Evolução Molecular , Genoma Fúngico , Modelos Genéticos , Schizosaccharomyces/citologia , Análise de Sequência de DNA
8.
Elife ; 3: e02630, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24963140

RESUMO

Hybrid sterility is one of the earliest postzygotic isolating mechanisms to evolve between two recently diverged species. Here we identify causes underlying hybrid infertility of two recently diverged fission yeast species Schizosaccharomyces pombe and S. kambucha, which mate to form viable hybrid diploids that efficiently complete meiosis, but generate few viable gametes. We find that chromosomal rearrangements and related recombination defects are major but not sole causes of hybrid infertility. At least three distinct meiotic drive alleles, one on each S. kambucha chromosome, independently contribute to hybrid infertility by causing nonrandom spore death. Two of these driving loci are linked by a chromosomal translocation and thus constitute a novel type of paired meiotic drive complex. Our study reveals how quickly multiple barriers to fertility can arise. In addition, it provides further support for models in which genetic conflicts, such as those caused by meiotic drive alleles, can drive speciation.DOI: http://dx.doi.org/10.7554/eLife.02630.001.


Assuntos
Rearranjo Gênico/genética , Genoma Fúngico , Hibridização Genética , Meiose/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Alelos , Aneuploidia , Cromossomos Fúngicos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Mitocondrial/genética , Haploidia , Recombinação Genética/genética , Schizosaccharomyces/crescimento & desenvolvimento , Esporos Fúngicos/fisiologia
9.
Nucleic Acids Res ; 42(1): 359-69, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24089141

RESUMO

Crossovers formed by recombination between homologous chromosomes are important for proper homolog segregation during meiosis and for generation of genetic diversity. Optimal molecular analysis of DNA intermediates of recombination requires synchronous cultures. We previously described a mutant, pat1-as2, of the fission yeast Schizosaccharomyces pombe that undergoes synchronous meiosis at 25°C when an ATP analog is added to the culture. Here, we compare recombination intermediates in pat1-as2 at 25°C with those in the widely used pat1-114 temperature-sensitive mutant at 34°C, a temperature higher than optimal. DNA double-strand breaks at most hotspots are similarly abundant in the two conditions but, remarkably, a few hotspots are distinctly deficient at 25°C. In both conditions, Holliday junctions at DNA break hotspots form more frequently between sister chromatids than between homologs, but a novel species, perhaps arising from invasion by only one end of broken DNA, is more readily observed at 25°C. Our results confirm the validity of previous assays of recombination intermediates in S. pombe and provide new information on the mechanism of meiotic recombination.


Assuntos
DNA Fúngico/metabolismo , Meiose/genética , Recombinação Genética , Schizosaccharomyces/genética , Temperatura , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Cruciforme/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética
10.
Chem Commun (Camb) ; 49(84): 9824-6, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24030197

RESUMO

We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important.


Assuntos
Lisina/análise , Ribonucleases/química , Sais/análise , Proteínas de Bactérias , Deutério/química , Concentração de Íons de Hidrogênio , Lisina/metabolismo , Espectroscopia de Ressonância Magnética/normas , Modelos Moleculares , Padrões de Referência , Ribonucleases/metabolismo , Sais/metabolismo , Soluções
12.
Mol Cell ; 49(5): 983-96, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23395004

RESUMO

Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hot spots, than in other regions of the genome. What distinguishes hot spots from cold regions is an unsolved problem, although transcription factors determine some hot spots. We report the discovery that three coiled-coil proteins-Rec25, Rec27, and Mug20-bind essentially all hot spots with great specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hot spots. Our results indicate these hot spot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hot spots. We propose a paradigm for hot spot determination and crossover control by linear element proteins.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico/metabolismo , Meiose , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinação Genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA