Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352237

RESUMO

The SPARC tokamak will have scrape-off layer parallel heat fluxes on the order of GW/m2. Managing power exhaust of this magnitude will be mandatory for a reactor-scale device. To enable this mission, a thermal diagnostic suite will be deployed to measure the in-vessel structural temperatures to ensure they do not exceed their design limits and to determine the spatial distribution and magnitude of energy deposited onto the first wall. Thermocouples and fiber Bragg gratings have been selected for their environmental compatibility and proven useful on other fusion devices. High-density thermocouple arrays in the divertor will have two spring-loaded thermocouples per divertor target tile, which are being used as calorimeters, and will look to resolve the temperature distribution within the tile due to a swept or static strike point. All systems will need to survive the vacuum vessel bake, set at a minimum plasma facing surface temperature of 350 °C, which presents a particularly challenging environment for the fiber-based subsystem. Along with this temperature design requirement, all the materials in the primary vacuum need to be ultra-high vacuum compatible, able to handle the expected neutron and gamma radiation, as well as tritium exposure, all of which restrict material options. Finally, due to the expected activated environment in SPARC, there will be little chance to replace defective sensors, so system resilience is ensured through toroidal redundancy, probe material selection, and mitigating the impact of common-mode failures. Initial testing of sensors show that intershot structural measurements are sufficiently captured with the raw output, but intrashot measurements of the plasma facing material requires model-based interpretive tools.

2.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39212501

RESUMO

To control and optimize the power of the SPARC tokamak, we require information on the total radiated power of the plasma and its 2D and 3D spatial distribution. The SPARC bolometry diagnostic is being designed and built to measure the radiated power for controlling power balance, investigating the dissipation capabilities of various divertor concepts, and measuring the efficacy of the disruption thermal load mitigation. Proven resistive bolometer sensor technology will be used, with 248 lines of sight integrated into pinhole cameras in 20 different locations. This diversity of views will allow the bolometers to view the core, divertor, and particularly X-points of the plasma with high resolution. 14 of these camera locations are dedicated to 2D equilibrium radiated power, while the remaining six locations are designed to measure 3D radiated energy during disruptions. The bolometer sensor holders, pinhole camera boxes, and cabling have been designed to survive the high neutron flux (but low fluence) and up to 400 °C temperatures seen during operation and vacuum bake. The resistive bolometer sensors use Au absorbers with an Al heat conduction layer and C anti-reflective layer. These sensor chips are wire-bonded to an AlN circuit board, both of which are held inside a custom AlN and stainless steel bolometer holder. Design and optimization of the pinhole camera lines of sight are performed using Cherab. This work details the current state of the design of the SPARC bolometry diagnostic and its interfaces, as well as ongoing work to validate the design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA