Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Bioengineering (Basel) ; 11(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39061719

RESUMO

Concurrent optical and magnetic stimulation (COMS) combines extremely low-frequency electromagnetic and light exposure for enhanced wound healing. We investigated the potential mechanistic synergism between the magnetic and light components of COMS by comparing their individual and combined cellular responses. Lone magnetic field exposure produced greater enhancements in cell proliferation than light alone, yet the combined effects of magnetic fields and light were supra-additive of the individual responses. Reactive oxygen species were incrementally reduced by exposure to light, magnetics fields, and their combination, wherein statistical significance was only achieved by the combined COMS modality. By contrast, ATP production was most greatly enhanced by magnetic exposure in combination with light, indicating that mitochondrial respiratory efficiency was improved by the combination of magnetic fields plus light. Protein expression pertaining to cell proliferation was preferentially enhanced by the COMS modality, as were the protein levels of the TRPC1 cation channel that had been previously implicated as part of a calcium-mitochondrial signaling axis invoked by electromagnetic exposure and necessary for proliferation. These results indicate that light facilitates functional synergism with magnetic fields that ultimately impinge on mitochondria-dependent developmental responses. Aminoglycoside antibiotics (AGAs) have been previously shown to inhibit TRPC1-mediated magnetotransduction, whereas their influence over photomodulation has not been explored. Streptomycin applied during exposure to light, magnetic fields, or COMS reduced their respective proliferation enhancements, whereas streptomycin added after the exposure did not. Magnetic field exposure and the COMS modality were capable of partially overcoming the antagonism of proliferation produced by streptomycin treatment, whereas light alone was not. The antagonism of photon-electromagnetic effects by streptomycin implicates TRPC1-mediated calcium entry in both magnetotransduction and photomodulation. Avoiding the prophylactic use of AGAs during COMS therapy will be crucial for maintaining clinical efficacy and is a common concern in most other electromagnetic regenerative paradigms.

2.
J Neurosci Methods ; 406: 110113, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38537749

RESUMO

OBJECTIVE: Detection of delayed cerebral ischemia (DCI) is challenging in comatose patients with poor-grade aneurysmal subarachnoid hemorrhage (aSAH). Brain tissue oxygen pressure (PbtO2) monitoring may allow early detection of its occurrence. Recently, a probe for combined measurement of intracranial pressure (ICP) and intraparenchymal near-infrared spectroscopy (NIRS) has become available. In this pilot study, the parameters PbtO2, Hboxy, Hbdeoxy, Hbtotal and rSO2 were measured in parallel and evaluated for their potential to detect perfusion deficits or cerebral infarction. METHODS: In patients undergoing multimodal neuromonitoring due to poor neurological condition after aSAH, Clark oxygen probes, microdialysis and NIRS-ICP probes were applied. DCI was suspected when the measured parameters in neuromonitoring deteriorated. Thus, perfusion CT scan was performed as follow up, and DCI was confirmed as perfusion deficit. Median values for PbtO2, Hboxy, Hbdeoxy, Hbtotal and rSO2 in patients with perfusion deficit (Tmax > 6 s in at least 1 vascular territory) and/or already demarked infarcts were compared in 24- and 48-hour time frames before imaging. RESULTS: Data from 19 patients (14 University Hospital Zurich, 5 Charité Universitätsmedizin Berlin) were prospectively collected and analyzed. In patients with perfusion deficits, the median values for Hbtotal and Hboxy in both time frames were significantly lower. With perfusion deficits, the median values for Hboxy and Hbtotal in the 24 h time frame were 46,3 [39.6, 51.8] µmol/l (no perfusion deficits 53 [45.9, 55.4] µmol/l, p = 0.019) and 69,3 [61.9, 73.6] µmol/l (no perfusion deficits 74,6 [70.1, 79.6] µmol/l, p = 0.010), in the 48 h time frame 45,9 [39.4, 51.5] µmol/l (no perfusion deficits 52,9 [48.1, 55.1] µmol/l, p = 0.011) and 69,5 [62.4, 74.3] µmol/l (no perfusion deficits 75 [70,80] µmol/l, p = 0.008), respectively. In patients with perfusion deficits, PbtO2 showed no differences in both time frames. PbtO2 was significantly lower in patients with infarctions in both time frames. The median PbtO2 was 17,3 [8,25] mmHg (with no infarctions 29 [22.5, 36] mmHg, p = 0.006) in the 24 h time frame and 21,6 [11.1, 26.4] mmHg (with no infarctions 31 [22,35] mmHg, p = 0.042) in the 48 h time frame. In patients with infarctions, the median values of parameters measured by NIRS showed no significant differences. CONCLUSIONS: The combined NIRS-ICP probe may be useful for early detection of cerebral perfusion deficits and impending DCI. Validation in larger patient collectives is needed.


Assuntos
Isquemia Encefálica , Espectroscopia de Luz Próxima ao Infravermelho , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/fisiopatologia , Projetos Piloto , Adulto , Pressão Intracraniana/fisiologia , Oxigênio/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Microdiálise/métodos
3.
Technol Health Care ; 32(2): 937-949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37483038

RESUMO

BACKGROUND: Intracranial pressure (ICP) is a vital parameter that is continuously monitored in patients with severe brain injury and imminent intracranial hypertension. OBJECTIVE: To estimate intracranial pressure without intracranial probes based on transcutaneous near infrared spectroscopy (NIRS). METHODS: We developed machine learning based approaches for noninvasive intracranial pressure (ICP) estimation using signals from transcutaneous near infrared spectroscopy (NIRS) as well as other cardiovascular and artificial ventilation parameters. RESULTS: In a patient cohort of 25 patients, with 22 used for model development and 3 for model testing, the best performing models were Fourier transform based Transformer ICP waveform estimation which produced a mean absolute error of 4.68 mm Hg (SD = 5.4) in estimation. CONCLUSION: We did not find a significant improvement in ICP estimation accuracy by including signals measured by transcutaneous NIRS. We expect that with higher quality and greater volume of data, noninvasive estimation of ICP will improve.


Assuntos
Hipertensão Intracraniana , Pressão Intracraniana , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Hipertensão Intracraniana/diagnóstico , Circulação Cerebrovascular , Algoritmos
4.
Environ Res ; 237(Pt 1): 116921, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598840

RESUMO

Mobile communication technology has evolved rapidly over the last ten years with a drastic increase in wireless data traffic and the deployment of new telecommunication technologies. The aim of this study was to evaluate the ambient radiofrequency electromagnetic field (RF-EMF) levels and temporal changes in various microenvironments in Switzerland in 2014 and 2021. We measured the ambient RF-EMF levels in V/m in the same 49 outdoor areas and in public transport in 2014 and 2021 using portable RF-EMF exposure meters carried in a backpack. The areas were selected to represent some typical types of microenvironments (e.g. urban city centres, suburban and rural areas). We calculated the summary statistics (mean, percentiles) in mW/m2 and converted back to V/m for each microenvironment. We evaluated the distribution and the variability of the ambient RF-EMF levels per microenvironment types in 2021. Finally, we compared the ambient RF-EMF mean levels in 2014 and 2021 using multilevel regression modelling. In outdoor areas, the average ambient RF-EMF mean levels per microenvironment in 2021 ranged from 0.19 V/m in rural areas to 0.43 V/m in industrial areas (overall mean: 0.27 V/m). In public transports, the mean levels were 0.27 V/m in buses, 0.33 V/m in trains and 0.36 V/m in trams. In 2021, mean levels across all outdoor areas were -0.022 V/m lower (95% confidence interval: -0.072, 0.030) than in 2014. Results from our comprehensive measurement study across Switzerland suggest that RF-EMF levels in public places have not significantly changed between 2014 and 2021 despite an 18-fold increase in mobile data transmission during that period. The absence of temporal changes may be owed to the shift to newer mobile communication technologies, which are more efficient.

5.
Bioelectromagnetics ; 44(1-2): 26-46, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36794844

RESUMO

Numerical investigation of the interaction of electromagnetic fields with eukaryotic cells requires specifically adapted computer models. Virtual microdosimetry, used to investigate exposure, requires volumetric cell models, which are numerically challenging. For this reason, a method is presented here to determine the current and volumetric loss densities occurring in single cells and their distinct compartments in a spatially accurate manner as a first step toward multicellular models within the microstructure of tissue layers. To achieve this, 3D models of the electromagnetic exposure of generic eukaryotic cells of different shape (i.e. spherical and ellipsoidal) and internal complexity (i.e. different organelles) are performed in a virtual, finite element method-based capacitor experiment in the frequency range from 10 Hz to 100 GHz. In this context, the spectral response of the current and loss distribution within the cell compartments is investigated and any effects that occur are attributed either to the dispersive material properties of these compartments or to the geometric characteristics of the cell model investigated in each case. In these investigations, the cell is represented as an anisotropic body with an internal distributed membrane system of low conductivity that mimics the endoplasmic reticulum in a simplified manner. This will be used to determine which details of the cell interior need to be modeled, how the electric field and the current density will be distributed in this region, and where the electromagnetic energy is absorbed in the microstructure regarding electromagnetic microdosimetry. Results show that for 5 G frequencies, membranes make a significant contribution to the absorption losses. © 2023 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society.


Assuntos
Campos Eletromagnéticos , Radiação Eletromagnética , Simulação por Computador , Eletricidade , Condutividade Elétrica , Modelos Biológicos
6.
J Orthop Translat ; 35: 99-112, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36262374

RESUMO

Background: Metabolic disruption commonly follows Anterior Cruciate Ligament Reconstruction (ACLR) surgery. Brief exposure to low amplitude and frequency pulsed electromagnetic fields (PEMFs) has been shown to promote in vitro and in vivo murine myogeneses via the activation of a calcium-mitochondrial axis conferring systemic metabolic adaptations. This randomized-controlled pilot trial sought to detect local changes in muscle structure and function using MRI, and systemic changes in metabolism using plasma biomarker analyses resulting from ACLR, with or without accompanying PEMF therapy. Methods: 20 patients requiring ACLR were randomized into two groups either undergoing PEMF or sham exposure for 16 weeks following surgery. The operated thighs of 10 patients were exposed weekly to PEMFs (1 â€‹mT for 10 â€‹min) for 4 months following surgery. Another 10 patients were subjected to sham exposure and served as controls to allow assessment of the metabolic repercussions of ACLR and PEMF therapy. Blood samples were collected prior to surgery and at 16 weeks for plasma analyses. Magnetic resonance data were acquired at 1 and 16 weeks post-surgery using a Siemens 3T Tim Trio system. Phosphorus (31P) Magnetic Resonance Spectroscopy (MRS) was utilized to monitor changes in high-energy phosphate metabolism (inorganic phosphate (Pi), adenosine triphosphate (ATP) and phosphocreatine (PCr)) as well as markers of membrane synthesis and breakdown (phosphomonoesters (PME) and phosphodiester (PDE)). Quantitative Magnetization Transfer (qMT) imaging was used to elucidate changes in the underlying tissue structure, with T1-weighted and 2-point Dixon imaging used to calculate muscle volumes and muscle fat content. Results: Improvements in markers of high-energy phosphate metabolism including reductions in ΔPi/ATP, Pi/PCr and (Pi â€‹+ â€‹PCr)/ATP, and membrane kinetics, including reductions in PDE/ATP were detected in the PEMF-treated cohort relative to the control cohort at study termination. These were associated with reductions in the plasma levels of certain ceramides and lysophosphatidylcholine species. The plasma levels of biomarkers predictive of muscle regeneration and degeneration, including osteopontin and TNNT1, respectively, were improved, whilst changes in follistatin failed to achieve statistical significance. Liquid chromatography with tandem mass spectrometry revealed reductions in small molecule biomarkers of metabolic disruption, including cysteine, homocysteine, and methionine in the PEMF-treated cohort relative to the control cohort at study termination. Differences in measurements of force, muscle and fat volumes did not achieve statistical significance between the cohorts after 16 weeks post-ACLR. Conclusion: The detected changes suggest improvements in systemic metabolism in the post-surgical PEMF-treated cohort that accords with previous preclinical murine studies. PEMF-based therapies may potentially serve as a manner to ameliorate post-surgery metabolic disruptions and warrant future examination in more adequately powered clinical trials. The Translational Potential of this Article: Some degree of physical immobilisation must inevitably follow orthopaedic surgical intervention. The clinical paradox of such a scenario is that the regenerative potential of the muscle mitochondrial pool is silenced. The unmet need was hence a manner to maintain mitochondrial activation when movement is restricted and without producing potentially damaging mechanical stress. PEMF-based therapies may satisfy the requirement of non-invasively activating the requisite mitochondrial respiration when mobility is restricted for improved metabolic and regenerative recovery.

7.
Biomaterials ; 287: 121658, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35841726

RESUMO

Pulsing electromagnetic fields (PEMFs) have been shown to promote in vitro and in vivo myogeneses via mitohormetic survival adaptations of which secretome activation is a key component. A single 10-min exposure of donor myoblast cultures to 1.5 mT amplitude PEMFs produced a conditioned media (pCM) capable of enhancing the myogenesis of recipient cultures to a similar degree as direct magnetic exposure. Downwardly-directed magnetic fields produced greater secretome responses than upwardly-directed fields in adherent and fluid-suspended myoblasts. The suspension paradigm allowed for the rapid concentrating of secreted factors, particularly of extracellular vesicles. The brief conditioning of basal media from magnetically-stimulated myoblasts was capable of conferring myoblast survival to a greater degree than basal media supplemented with fetal bovine serum (5%). Downward-directed magnetic fields, applied directly to cells or in the form of pCM, upregulated the protein expression of TRPC channels, markers for cell cycle progression and myogenesis. Direct magnetic exposure produced mild oxidative stress, whereas pCM provision did not, providing a survival advantage on recipient cells. Streptomycin, a TRP channel antagonist, precluded the production of a myogenic pCM. We present a methodology employing a brief and non-invasive PEMF-exposure paradigm to effectively stimulate secretome production and release for commercial or clinical exploitation.

9.
Commun Math Phys ; 389(3): 1673-1715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221348

RESUMO

It is argued that the Schrödinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated physical systems featuring events. A general statistical law replacing unitary Schrödinger evolution of states is then formulated within the so-called ETH-Approach to Quantum Mechanics. This law eliminates the infamous "measurement problem." Our general concepts and results are illustrated by an analysis of simple models describing a very heavy atom coupled to the quantized radiation field. In the limit where the speed of light tends to infinity these models can be treated quite explicitly.

11.
Front Oncol ; 11: 783803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35141145

RESUMO

Chemotherapy is the mainstream treatment modality for invasive breast cancer. Unfortunately, chemotherapy-associated adverse events can result in early termination of treatment. Paradoxical effects of chemotherapy are also sometimes observed, whereby prolonged exposure to high doses of chemotherapeutic agents results in malignant states resistant to chemotherapy. In this study, potential synergism between doxorubicin (DOX) and pulsed electromagnetic field (PEMF) therapy was investigated in: 1) MCF-7 and MDA-MB-231 cells in vitro; 2) MCF-7 tumors implanted onto a chicken chorioallantoic membrane (CAM) and; 3) human patient-derived and MCF-7 and MDA-MB-231 breast cancer xenografts implanted into NOD-SCID gamma (NSG) mice. In vivo, synergism was observed in patient-derived and breast cancer cell line xenograft mouse models, wherein PEMF exposure and DOX administration individually reduced tumor size and increased apoptosis and could be augmented by combined treatments. In the CAM xenograft model, DOX and PEMF exposure also synergistically reduced tumor size as well as reduced Transient Receptor Potential Canonical 1 (TRPC1) channel expression. In vitro, PEMF exposure alone impaired the survival of MCF-7 and MDA-MB-231 cells, but not that of non-malignant MCF10A breast cells; the selective vulnerability of breast cancer cells to PEMF exposure was corroborated in human tumor biopsy samples. Stable overexpression of TRPC1 enhanced the vulnerability of MCF-7 cells to both DOX and PEMF exposure and promoted proliferation, whereas TRPC1 genetic silencing reduced sensitivity to both DOX and PEMF treatments and mitigated proliferation. Chronic exposure to DOX depressed TRPC1 expression, proliferation, and responses to both PEMF exposure and DOX in a manner that was reversible upon removal of DOX. TRPC1 channel overexpression and silencing positively correlated with markers of epithelial-mesenchymal transition (EMT), including SLUG, SNAIL, VIMENTIN, and E-CADHERIN, indicating increased and decreased EMT, respectively. Finally, PEMF exposure was shown to attenuate the invasiveness of MCF-7 cells in correlation with TRPC1 expression. We thus demonstrate that the expression levels of TRPC1 consistently predicted breast cancer sensitivity to DOX and PEMF interventions and positively correlated to EMT status, providing an initial rationale for the use of PEMF-based therapies as an adjuvant to DOX chemotherapy for the treatment of breast cancers characterized by elevated TRPC1 expression levels.

12.
FASEB J ; 34(8): 11143-11167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627872

RESUMO

Exercise modulates metabolism and the gut microbiome. Brief exposure to low mT-range pulsing electromagnetic fields (PEMFs) was previously shown to accentuate in vitro myogenesis and mitochondriogenesis by activating a calcium-mitochondrial axis upstream of PGC-1α transcriptional upregulation, recapitulating a genetic response implicated in exercise-induced metabolic adaptations. We compared the effects of analogous PEMF exposure (1.5 mT, 10 min/week), with and without exercise, on systemic metabolism and gut microbiome in four groups of mice: (a) no intervention; (b) PEMF treatment; (c) exercise; (d) exercise and PEMF treatment. The combination of PEMFs and exercise for 6 weeks enhanced running performance and upregulated muscular and adipose Pgc-1α transcript levels, whereas exercise alone was incapable of elevating Pgc-1α levels. The gut microbiome Firmicutes/Bacteroidetes ratio decreased with exercise and PEMF exposure, alone or in combination, which has been associated in published studies with an increase in lean body mass. After 2 months, brief PEMF treatment alone increased Pgc-1α and mitohormetic gene expression and after >4 months PEMF treatment alone enhanced oxidative muscle expression, fatty acid oxidation, and reduced insulin levels. Hence, short-term PEMF treatment was sufficient to instigate PGC-1α-associated transcriptional cascades governing systemic mitohormetic adaptations, whereas longer-term PEMF treatment was capable of inducing related metabolic adaptations independently of exercise.


Assuntos
Microbioma Gastrointestinal/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Bacteroidetes/crescimento & desenvolvimento , Composição Corporal/fisiologia , Ácidos Graxos/metabolismo , Feminino , Firmicutes/crescimento & desenvolvimento , Seguimentos , Expressão Gênica/fisiologia , Insulina/metabolismo , Campos Magnéticos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia
13.
FASEB J ; 33(11): 12853-12872, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518158

RESUMO

We show that both supplemental and ambient magnetic fields modulate myogenesis. A lone 10 min exposure of myoblasts to 1.5 mT amplitude supplemental pulsed magnetic fields (PEMFs) accentuated in vitro myogenesis by stimulating transient receptor potential (TRP)-C1-mediated calcium entry and downstream nuclear factor of activated T cells (NFAT)-transcriptional and P300/CBP-associated factor (PCAF)-epigenetic cascades, whereas depriving myoblasts of ambient magnetic fields slowed myogenesis, reduced TRPC1 expression, and silenced NFAT-transcriptional and PCAF-epigenetic cascades. The expression levels of peroxisome proliferator-activated receptor γ coactivator 1α, the master regulator of mitochondriogenesis, was also enhanced by brief PEMF exposure. Accordingly, mitochondriogenesis and respiratory capacity were both enhanced with PEMF exposure, paralleling TRPC1 expression and pharmacological sensitivity. Clustered regularly interspaced short palindromic repeats-Cas9 knockdown of TRPC1 precluded proliferative and mitochondrial responses to supplemental PEMFs, whereas small interfering RNA gene silencing of TRPM7 did not, coinciding with data that magnetoreception did not coincide with the expression or function of other TRP channels. The aminoglycoside antibiotics antagonized and down-regulated TRPC1 expression and, when applied concomitantly with PEMF exposure, attenuated PEMF-stimulated calcium entry, mitochondrial respiration, proliferation, differentiation, and epigenetic directive in myoblasts, elucidating why the developmental potential of magnetic fields may have previously escaped detection. Mitochondrial-based survival adaptations were also activated upon PEMF stimulation. Magnetism thus deploys an authentic myogenic directive that relies on an interplay between mitochondria and TRPC1 to reach fruition.-Yap, J. L. Y., Tai, Y. K., Fröhlich, J., Fong, C. H. H., Yin, J. N., Foo, Z. L., Ramanan, S., Beyer, C., Toh, S. J., Casarosa, M., Bharathy, N., Kala, M. P., Egli, M., Taneja, R., Lee, C. N., Franco-Obregón, A. Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism.


Assuntos
Campos Magnéticos , Mitocôndrias Musculares/metabolismo , Desenvolvimento Muscular , Mioblastos Esqueléticos/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Animais , Linhagem Celular , Camundongos , Mitocôndrias Musculares/genética , Mioblastos Esqueléticos/citologia , Canais de Cátion TRPC/genética
14.
Bioelectromagnetics ; 39(7): 529-538, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30334586

RESUMO

Portable devices measuring radiofrequency electromagnetic fields (RF-EMF) are affected by crosstalk: signals originating in one frequency band that are unintentionally registered in another. If this is not corrected, total exposure to RF-EMF is biased, particularly affecting closely spaced frequency bands such as GSM 1800 downlink (1,805-1,880 MHz), DECT (1,880-1,900 MHz), and UMTS uplink (1,920-1,980 MHz). This study presents an approach to detect and correct crosstalk in RF-EMF measurements, taking into account the real-life setting in which crosstalk is intermittently present, depending on the exact frequency of the signal. Personal measurements from 115 volunteers from Zurich canton, Switzerland were analyzed. Crosstalk-affected observations were identified by correlation analysis, and replaced by the median value of the unaffected observations, measured during the same activity. DECT is frequently a victim of crosstalk, and an average of 43% of observations was corrected, resulting in an average exposure reduction of 38%. GSM 1800 downlink and UMTS uplink were less often corrected (6.9% and 8.9%), resulting in minor reductions in exposure (7.1% and 0.92%). The contribution of DECT to total RF-EMF exposure is typically already low (3.2%), but is further reduced after correction (3.0%). Crosstalk corrections reduced the total exposure by 1.0% on average. Some individuals had a larger reduction of up to 16%. The code developed to make the corrections is provided for free as an R function which is easily applied to any time series of EMF measurements. Bioelectromagnetics. 39:529-538, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Artefatos , Campos Eletromagnéticos , Monitoramento de Radiação/instrumentação , Ondas de Rádio
16.
Sci Rep ; 7(1): 9421, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842627

RESUMO

Pulse electromagnetic fields (PEMFs) have been shown to recruit calcium-signaling cascades common to chondrogenesis. Here we document the effects of specified PEMF parameters over mesenchymal stem cells (MSC) chondrogenic differentiation. MSCs undergoing chondrogenesis are preferentially responsive to an electromagnetic efficacy window defined by field amplitude, duration and frequency of exposure. Contrary to conventional practice of administering prolonged and repetitive exposures to PEMFs, optimal chondrogenic outcome is achieved in response to brief (10 minutes), low intensity (2 mT) exposure to 6 ms bursts of magnetic pulses, at 15 Hz, administered only once at the onset of chondrogenic induction. By contrast, repeated exposures diminished chondrogenic outcome and could be attributed to calcium entry after the initial induction. Transient receptor potential (TRP) channels appear to mediate these aspects of PEMF stimulation, serving as a conduit for extracellular calcium. Preventing calcium entry during the repeated PEMF exposure with the co-administration of EGTA or TRP channel antagonists precluded the inhibition of differentiation. This study highlights the intricacies of calcium homeostasis during early chondrogenesis and the constraints that are placed on PEMF-based therapeutic strategies aimed at promoting MSC chondrogenesis. The demonstrated efficacy of our optimized PEMF regimens has clear clinical implications for future regenerative strategies for cartilage.


Assuntos
Condrogênese/efeitos da radiação , Campos Eletromagnéticos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos da radiação , Cálcio/metabolismo , Sinalização do Cálcio , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Matriz Extracelular , Humanos , Células-Tronco Mesenquimais/citologia
17.
Environ Int ; 103: 8-12, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351768

RESUMO

INTRODUCTION: Modern sensor technology makes it possible to collect vast amounts of environmental, behavioural and health data. These data are often linked to contextual information on for example exposure sources which is separately collected with considerable lag time, leading to complications in assessing transient and/or highly spatially variable environmental exposures. Context-Sensitive Ecological Momentary Assessments1 (CS-EMAs) could be used to address this. We present a case study using radiofrequency-electromagnetic fields (RF-EMF) exposure as an example for implementing CS-EMA in environmental research. METHODS: Participants were asked to install a custom application on their own smartphone and to wear an RF-EMF exposimeter for 48h. Questionnaires were triggered by the application based on a continuous data stream from the exposimeter. Triggers were divided into four categories: relative and absolute exposure levels, phone calls, and control condition. After the two days of use participants filled in an evaluation questionnaire. RESULTS: 74% of all CS-EMAs were completed, with an average time of 31s to complete a questionnaire once it was opened. Participants reported minimal influence on daily activities. There were no significant differences found between well-being and type of RF-EMF exposure. CONCLUSIONS: We show that a CS-EMA based method could be used in environmental research. Using several examples involving environmental stressors, we discuss both current and future applications of this methodology in studying potential health effects of environmental factors.


Assuntos
Avaliação Momentânea Ecológica , Smartphone , Adolescente , Adulto , Campos Eletromagnéticos , Exposição Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ondas de Rádio , Projetos de Pesquisa , Inquéritos e Questionários , Adulto Jovem
18.
Environ Int ; 99: 303-314, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28038972

RESUMO

BACKGROUND: Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). OBJECTIVES: The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. METHODS: Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. RESULTS: Main contributors to the total personal RF-EMF measurements of 63.2µW/m2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. CONCLUSIONS: RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Exposição à Radiação , Monitoramento de Radiação , Tecnologia sem Fio , Adolescente , Feminino , Humanos , Masculino , Ondas de Rádio , Suíça
19.
Int J Environ Res Public Health ; 11(9): 9460-79, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25216256

RESUMO

Exposure to electromagnetic fields (EMF) is a cause of concern for many people. The topic will likely remain for the foreseeable future on the scientific and political agenda, since emissions continue to change in characteristics and levels due to new infrastructure deployments, smart environments and novel wireless devices. Until now, systematic and coordinated efforts to monitor EMF exposure are rare. Furthermore, virtually nothing is known about personal exposure levels. This lack of knowledge is detrimental for any evidence-based risk, exposure and health policy, management and communication. The main objective of the paper is to review the current state of EMF exposure monitoring activities in Europe, to comment on the scientific challenges and deficiencies, and to describe appropriate strategies and tools for EMF exposure assessment and monitoring to be used to support epidemiological health research and to help policy makers, administrators, industry and consumer representatives to base their decisions and communication activities on facts and data.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Monitoramento Ambiental , Política de Saúde/legislação & jurisprudência , Europa (Continente) , Humanos , Medição de Risco
20.
Bioelectromagnetics ; 35(7): 470-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123495

RESUMO

Previous studies on possible interactions of radiofrequency electromagnetic fields (RF EMFs) with proteins have suggested that RF EMFs might affect protein structure and folding kinetics. In this study, the isolated thermosensor protein GrpE of the Hsp70 chaperone system of Escherichia coli was exposed to EMFs of various frequencies and field strengths under strictly controlled conditions. Circular dichroism spectroscopy was used to monitor possible structural changes. Simultaneously, temperature was recorded at each point of observation. The coiled-coil part of GrpE has been reported to undergo a well-defined and fully reversible folding/unfolding transition, thus facilitating the differentiation between thermal and non-thermal effects of RF EMFs. Any direct effect of EMF on the conformation and/or stability would result in a shift of the conformational equilibrium of the protein at a given temperature. Possible immediate (t ≤ 0.1 s) and delayed (t ≥ 30 s) effects of RF EMFs were investigated with sinusoidal signals of 0.1, 1.0, and 1.9 GHz at various field strengths up to 5.0 kV/m and with GSM signals at 0.3 kV/m in the protein solution. Taking the overall uncertainty of the experimental system into account, possible RF EMF-induced shifts in the conformational equilibrium of less than 1% of its total range might have been detected. The results obtained with the different experimental protocols indicate, however, that the conformational equilibrium of GrpE is insensitive to electromagnetic fields in the tested range of frequency and field strength.


Assuntos
Campos Eletromagnéticos , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Dicroísmo Circular , Escherichia coli , Cinética , Fosfatos/química , Compostos de Potássio/química , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA