Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38691660

RESUMO

SNPs in the FAM13A locus are amongst the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases, however the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: 'long' and 'short', but their functions remain unknown, partly due to a lack of isoform conservation in mice. We performed in-depth characterisation of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate RhoGAP activity of this domain. In Xenopus laevis, which conserve the long isoform, Fam13a-deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long isoform deficiency did not affect multiciliogenesis but reduced cilia co-ordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform co-ordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
Respir Res ; 25(1): 180, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664797

RESUMO

BACKGROUND: Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium. METHODS: hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties. RESULTS: Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without ionocytes with reduced capacity to produce ciliated cells. CONCLUSION: Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating epithelial properties and homeostasis in the airway epithelium.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mucosa Respiratória , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Organoides/metabolismo
3.
ACS Nano ; 18(4): 3382-3396, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38237058

RESUMO

Virus-like particles (VLPs) are emerging as nanoscaffolds in a variety of biomedical applications including delivery of vaccine antigens and cargo such as mRNA to mucosal surfaces. These soft, colloidal, and proteinaceous structures (capsids) are nevertheless susceptible to mucosal environmental stress factors. We cross-linked multiple capsid surface amino acid residues using homobifunctional polyethylene glycol tethers to improve the persistence and survival of the capsid to model mucosal stressors. Surface cross-linking enhanced the stability of VLPs assembled from Acinetobacter phage AP205 coat proteins in low pH (down to pH 4.0) and high protease concentration conditions (namely, in pig and mouse gastric fluids). Additionally, it increased the stiffness of VLPs under local mechanical indentation applied using an atomic force microscopy cantilever tip. Small angle X-ray scattering revealed an increase in capsid diameter after cross-linking and an increase in capsid shell thickness with the length of the PEG cross-linkers. Moreover, surface cross-linking had no effect on the VLPs' mucus translocation and accumulation on the epithelium of in vitro 3D human nasal epithelial tissues with mucociliary clearance. Finally, it did not compromise VLPs' function as vaccines in mouse subcutaneous vaccination models. Compared to PEGylation without cross-linking, the stiffness of surface cross-linked VLPs were higher for the same length of the PEG molecule, and also the lifetimes of surface cross-linked VLPs were longer in the gastric fluids. Surface cross-linking using macromolecular tethers, but not simple conjugation of these molecules, thus offers a viable means to enhance the resilience and survival of VLPs for mucosal applications.


Assuntos
Resiliência Psicológica , Vacinas de Partículas Semelhantes a Vírus , Humanos , Animais , Camundongos , Suínos , Proteínas do Capsídeo/química , Capsídeo/metabolismo , Vacinas de Partículas Semelhantes a Vírus/genética
4.
R Soc Open Sci ; 10(8): 230185, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37538747

RESUMO

Cilia density, distribution and beating frequency are important properties of airway epithelial tissues. These parameters are critical in diagnosing primary ciliary dyskinesia and examining in vitro models, including those derived from induced pluripotent stem cells. Video microscopy can be used to characterize these parameters, but most tools available at the moment are limited in the type of information they can provide, usually only describing the ciliary beat frequency of very small areas, while requiring human intervention and training for their use. We propose a novel and open-source method to fully characterize cilia beating frequency and motile cilia coverage in an automated fashion without user intervention. We demonstrate the ability to differentiate between different coverage densities, identifying even small patches of cilia in a larger field of view, and to fully characterize the cilia beating frequency of all moving areas. We also show that the method can be used to combine multiple fields of view to better describe a sample without relying on small pre-selected regions of interest. This is released with a simple graphical user interface for file handling, enabling a full analysis of individual fields of view in a few minutes on a typical personal computer.

5.
J Chromatogr A ; 1610: 460539, 2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31543341

RESUMO

Over the past decade significant progress has been found in the upstream production processes, shifting the main bottlenecks in current manufacturing platforms for biopharmaceuticals towards the downstream processing. Challenges in the purification process include reducing the production costs, developing robust and efficient purification processes as well as integrating both upstream and downstream processes. Microfluidic technologies have recently emerged as effective tools for expediting bioprocess design in a cost-effective manner, since a large number of variables can be evaluated in a small time frame, using reduced volumes and manpower. Their modularity also allows to integrate different unit operations into a single chip, and consequently to evaluate the effect of each stage on the overall process efficiency. This paper describes the development of a diffusion-based microfluidic device for the rapid screening of continuous chemical lysis conditions. The release of a recombinant green fluorescent protein (GFP) expressed in Escherichia coli (E. coli) was used as model system due to the simple evaluation of cell growth and product concentration by fluorescence. The concept can be further applied to any biopharmaceutical production platform. The microfluidic device was successfully used to test the lytic effect of both enzymatic and chemical lysis solutions, with lysis efficiency of about 60% and close to 100%, respectively, achieved. The microfluidic technology also demonstrated the ability to detect potential process issues, such as the increased viscosity related with the rapid release of genomic material, that can arise for specific lysis conditions and hinder the performance of a bioprocess. Finally, given the continuous operation of the lysis chip, the microfluidic technology has the potential to be integrated with other microfluidic modules in order to model a fully continuous biomanufacturing process on a chip.


Assuntos
Bactérias , Técnicas Analíticas Microfluídicas , Proteínas Recombinantes , Bactérias/química , Bactérias/citologia , Bactérias/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
6.
Int J Biol Macromol ; 93(Pt B): 1432-1445, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27267575

RESUMO

Nowadays, the incidence of bone disorders has steeply ascended and it is expected to double in the next decade, especially due to the ageing of the worldwide population. Bone defects and fractures lead to reduced patient's quality of life. Autografts, allografts and xenografts have been used to overcome different types of bone injuries, although limited availability, immune rejection or implant failure demand the development of new bone replacements. Moreover, the bacterial colonization of bone substitutes is the main cause of implant rejection. To vanquish these drawbacks, researchers from tissue engineering area are currently using computer-aided design models or medical data to produce 3D scaffolds by Rapid Prototyping (RP). Herein, Tricalcium phosphate (TCP)/Sodium Alginate (SA) scaffolds were produced using RP and subsequently functionalized with silver nanoparticles (AgNPs) through two different incorporation methods. The obtained results revealed that the composite scaffolds produced by direct incorporation of AgNPs are the most suitable for being used in bone tissue regeneration since they present appropriate mechanical properties, biocompatibility and bactericidal activity.


Assuntos
Antibacterianos/química , Substitutos Ósseos/química , Nanopartículas Metálicas/química , Prata/química , Alicerces Teciduais/química , Antibacterianos/farmacologia , Regeneração Óssea , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Elasticidade , Humanos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Porosidade , Impressão Tridimensional , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA