Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS J ; 26(5): 96, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174806

RESUMO

Stress testing (also known as forced degradation) of pharmaceutical drug substances and products is a critical part of the drug development process, providing insight into the degradation pathways of drug substances and drug products. This information is used to support the development of stability-indicating methods (SIMs) capable of detecting pharmaceutically relevant degradation products that might potentially be observed during manufacturing, long-term storage, distribution, and use. Assessing mass balance of stressed samples is a key aspect of developing SIMs and is a regulatory expectation. However, the approaches to measure, calculate, and interpret mass balance can vary among different pharmaceutical companies. Such disparities also pose difficulties for health authorities when reviewing mass balance assessments, which may result in the potential delay of drug application approvals. The authors have gathered input from 10 pharma companies to map out a practical review of science-based approaches and technical details to assess and interpret mass balance results. Key concepts of mass balance are introduced, various mass balance calculations are demonstrated, and recommendations on how to investigate poor mass balance results are presented using real-world case studies. Herein we provide a single source reference on the topic of mass balance in pharmaceutical forced degradation for small molecule drug substances and drug products in support of regulatory submissions with the goal of facilitating a shared understanding among pharmaceutical scientists and health authorities.


Assuntos
Estabilidade de Medicamentos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Indústria Farmacêutica/métodos , Humanos , Desenvolvimento de Medicamentos/métodos
2.
J Pharm Sci ; 112(12): 2948-2964, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37690775

RESUMO

Forced degradation (i.e., stress testing) of small molecule drug substances and products is a critical part of the drug development process, providing insight into the intrinsic stability of a drug that is foundational to the development and validation of stability-indicating analytical methods. There is a lack of clarity in the scientific literature and regulatory guidance as to what constitutes an "appropriate" endpoint to a set of stress experiments. That is, there is no clear agreement regarding how to determine if a sample has been sufficiently stressed. Notably, it is unclear what represents a suitable justification for declaring a drug substance (DS) or drug product (DP) "stable" to a specific forced degradation condition. To address these concerns and to ensure all pharmaceutically-relevant, potential degradation pathways have been suitably evaluated, we introduce a two-endpoint classification designation supported by experimental data. These two endpoints are 1) a % total degradation target outcome (e.g., for "reactive" drugs) or, 2) a specified amount of stress, even in the absence of any degradation (e.g., for "stable" drugs). These recommended endpoints are based on a review of the scientific literature, regulatory guidance, and a forced degradation data set from ten global pharmaceutical companies. The experimental data set, derived from the Campbell et al. (2022) benchmarking study,1 provides justification for the recommendations. Herein we provide a single source reference for small molecule DS and DP forced degradation stress conditions and endpoint best practices to support regulatory submissions (e.g., marketing applications). Application of these forced degradation conditions and endpoints, as part of a well-designed, comprehensive and a sufficiently rigorous study plan that includes both the DS and DP, provides comprehensive coverage of pharmaceutically-relevant degradation and avoids unreasonably extreme stress conditions and drastic endpoint recommendations sometimes found in the literature.


Assuntos
Estabilidade de Medicamentos , Preparações Farmacêuticas , Oxirredução , Hidrólise , Cromatografia Líquida de Alta Pressão/métodos
3.
J Pharm Sci ; 111(2): 298-305, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34111446

RESUMO

Stress testing (also known as forced degradation) of pharmaceutical products has long been recognized as a critical part of the drug development process, providing foundational information related to intrinsic stability characteristics and to the development of stability-indicating analytical methods. A benchmarking study was undertaken by nine pharmaceutical companies and the Brazilian Health Regulatory Agency (Agência Nacional de Vigilância Sanitária, or ANVISA) with a goal of understanding the utility of various stress testing conditions for producing pharmaceutically-relevant chemical degradation of drugs. Special consideration was given to determining whether solution phase stress testing of solid drug products produced degradation products that were both unique when compared to other stress conditions and relevant to the formal drug product stability data. The results from studies of 62 solid dosage form drug products were compiled.  A total of 387 degradation products were reported as being observed in stress testing studies, along with 173 degradation products observed in accelerated and/or long-term stability studies for the 62 drug products.  Among these, 25 of the stress testing degradation products were unique to the solution phase stress testing of the drug products; however, none of these unique degradation products were relevant to the formal stability data. The relevant degradation products were sufficiently accounted for by stress testing studies that included only drug substance stressing (in solution and in the solid state) and drug product stressing (in the solid state). Based on these results, it is the opinion of the authors that for solid dosage form drug products, well-designed stress testing studies need not include solution phase stress testing of the drug product in order to be comprehensive.


Assuntos
Benchmarking , Estabilidade de Medicamentos
4.
Curr Drug Deliv ; 18(7): 1022-1026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33388018

RESUMO

INTRODUCTION: The most common treatment for Primary Open-Angle Glaucoma (POAG) is the daily use of eye drops. Sustained-release drug delivery systems have been developed to improve patient adherence by achieving prolonged therapeutic drug concentrations in ocular target tissues while limiting systemic exposure. The purpose of this study is to compare the efficacy and safety of bimatoprost inserts with bimatoprost eye drops in patients with POAG and Ocular Hypertension (OH). METHODS: We include OH and POAG patients aged between 40 and 75 years-old. Both OH and POAG patients had intraocular pressure (IOP) greater than 21 and ≤30 mmHg at 9:00 am without glaucoma medication and normal biomicroscopy. Five normal patients with IOP≤14 mmHg constitute the control group. A chitosan-based insert of bimatoprost was placed at the upper conjunctival fornix of the right eye. In the left eye, patients used one drop of LumiganTM daily at 10:00 pm. For statistical analysis, a two-way analysis of variance (ANOVA), Student t-test, and paired t-test is used. RESULTS: Sixteen POAG and 13 OH patients with a mean age of 61 years were assessed. In both eyes, IOP reduction was similar during three weeks of follow-up (19.5±2.2 mmHg and 16.9±3.1 mmHg), insert, and eye drop, respectively; P=0.165). The percentage of IOP reduction in the third week was 30% for insert and 35% for eye drops (P=0.165). No intolerance or discomfort with the insert was reported. Among the research participants, 58% preferred the use of the insert while 25% preferred eye drops, and 17% reported no preference. CONCLUSION: Bimatoprost-loaded inserts showed similar efficacy to daily bimatoprost eye drops during three weeks of follow up, without major side effects. This might suggest a possible change in the daily therapeutic regimen for the treatment of POAG and OH.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Adulto , Idoso , Amidas , Anti-Hipertensivos , Bimatoprost , Glaucoma de Ângulo Aberto/tratamento farmacológico , Humanos , Pressão Intraocular , Pessoa de Meia-Idade , Hipertensão Ocular/tratamento farmacológico , Soluções Oftálmicas
5.
PLoS One ; 10(7): e0133149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26204514

RESUMO

The aim of this study was to develop and evaluate the effects of chitosan inserts for sustained release of the angiotensin-converting enzyme 2 (ACE2) activator, diminazene aceturate (DIZE), in experimental glaucoma. Monolayer DIZE loaded inserts (D+I) were prepared and characterized through swelling, attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and in vitro drug release. Functionally, the effects of D+I were tested in glaucomatous rats. Glaucoma was induced by weekly injections of hyaluronic acid (HA) into the anterior chamber and intraocular pressure (IOP) measurements were performed. Retinal ganglion cells (RGC) and optic nerve head cupping were evaluated in histological sections. Biodistribution of the drug was accessed by scintigraphic images and ex vivo radiation counting. We found that DIZE increased the swelling index of the inserts. Also, it was molecularly dispersed and interspersed in the polymeric matrix as a freebase. DIZE did not lose its chemical integrity and activity when loaded in the inserts. The functional evaluation demonstrated that D+I decreased the IOP and maintained the IOP lowered for up to one month (last week: 11.0 ± 0.7 mmHg). This effect of D+I prevented the loss of RGC and degeneration of the optic nerve. No toxic effects in the eyes related to application of the inserts were observed. Moreover, biodistribution studies showed that D+I prolonged the retention of DIZE in the corneal site. We concluded that D+I provided sustained DIZE delivery in vivo, thereby evidencing the potential application of polymeric-based DIZE inserts for glaucoma management.


Assuntos
Diminazena/análogos & derivados , Proteínas do Olho/agonistas , Glaucoma/tratamento farmacológico , Peptidil Dipeptidase A/efeitos dos fármacos , Administração Oftálmica , Enzima de Conversão de Angiotensina 2 , Animais , Pressão Sanguínea/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Quitosana , Preparações de Ação Retardada , Diminazena/administração & dosagem , Diminazena/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Glaucoma/induzido quimicamente , Glaucoma/patologia , Ácido Hialurônico/toxicidade , Pressão Intraocular/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual
6.
PLoS One ; 9(4): e95461, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788066

RESUMO

The purpose of the present study was to develop and assess a novel sustained-release drug delivery system of Bimatoprost (BIM). Chitosan polymeric inserts were prepared using the solvent casting method and characterized by swelling studies, infrared spectroscopy, differential scanning calorimetry, drug content, scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar rats, was accessed by ex vivo radiation counting. The inserts were evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded inserts (equivalent to 9.0 µg BIM) were administered once into conjunctival sac, after ocular hypertension confirmation. BIM eye drop was topically instilled in a second group of glaucomatous rats for 15 days days, while placebo inserts were administered once in a third group. An untreated glaucomatous group was used as control. Intraocular pressure (IOP) was monitored for four consecutive weeks after treatment began. At the end of the experiment, retinal ganglion cells and optic nerve head cupping were evaluated in the histological eye sections. Characterization results revealed that the drug physically interacted, but did not chemically react with the polymeric matrix. Inserts sustainedly released BIM in vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM that remained in the eye was significantly lower after eye drop instillation than after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks, after one application, while IOP values remained significantly high for the placebo and untreated groups. Eye drops were only effective during the daily treatment period. IOP results were reflected in RGC counting and optic nerve head cupping damage. BIM-loaded inserts provided sustained release of BIM and seem to be a promising system for glaucoma management.


Assuntos
Amidas/administração & dosagem , Cloprostenol/análogos & derivados , Glaucoma/tratamento farmacológico , Administração Oftálmica , Amidas/farmacocinética , Amidas/uso terapêutico , Animais , Bimatoprost , Varredura Diferencial de Calorimetria , Cloprostenol/administração & dosagem , Cloprostenol/farmacocinética , Cloprostenol/uso terapêutico , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Glaucoma/fisiopatologia , Humanos , Técnicas In Vitro , Pressão Intraocular , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA