Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(24): 7676-7688, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38062559

RESUMO

In this work, we study the use of three configurations of an autoencoder neural network to process organic substances with the aim of generating meaningful molecular descriptors that can be employed to develop property prediction models. A total of 18,322,500 compounds represented as SMILES strings were used to train the model, demonstrating that a latent space of 24 units is able to adequately reconstruct the data. After AE training, an analysis of the latent space properties in terms of compound similarity was carried out, indicating that this space possesses desired properties for the potential development of models for forecasting physical properties of organic compounds. As a final step, a QSPR model was developed to predict the boiling point of chemical substances based on the AE descriptors. 5276 substances were used for the regression task, and the predictive ability was compared with models available in the literature evaluated on the same database. The final AE model has an overall error of 1.40% (1.39% with augmented SMILES) in the prediction of the boiling temperature, while other models have errors between 2.0 and 3.2%. This shows that the SMILES representation is comparable and even outperforms the state-of-the-art representations widely used in the literature.


Assuntos
Compostos Orgânicos , Relação Quantitativa Estrutura-Atividade , Compostos Orgânicos/química , Redes Neurais de Computação , Temperatura de Transição , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA