Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 5(6): 679-84, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944743

RESUMO

Nucleoside analogues have long been recognized as prospects for the discovery of direct acting antivirals (DAAs) to treat hepatitis C virus because they have generally exhibited cross-genotype activity and a high barrier to resistance. C-Nucleosides have the potential for improved metabolism and pharmacokinetic properties over their N-nucleoside counterparts due to the presence of a strong carbon-carbon glycosidic bond and a non-natural heterocyclic base. Three 2'CMe-C-adenosine analogues and two 2'CMe-guanosine analogues were synthesized and evaluated for their anti-HCV efficacy. The nucleotide triphosphates of four of these analogues were found to inhibit the NS5B polymerase, and adenosine analogue 1 was discovered to have excellent pharmacokinetic properties demonstrating the potential of this drug class.

2.
J Org Chem ; 68(3): 989-92, 2003 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12558425

RESUMO

We report efficient syntheses of the clinical agent cladribine (2-chloro-2'-deoxyadenosine, CldAdo), which is the drug of choice against hairy-cell leukemia and other neoplasms, from 2'-deoxyguanosine. Treatment of 3',5'-di-O-acetyl- or benzoyl-2'-deoxyguanosine (1) with 2,4,6-triisopropyl- or 4-methylbenzenesulfonyl chloride gave high yields of the 6-O-arylsulfonyl derivatives 2 or 2'b. Deoxychlorination at C6 of 1 also proceeded to give the 2-amino-6-chloropurine derivative 5 in excellent yields. The nonaqueous diazotization/chloro dediazoniation (acetyl chloride/benzyltriethylammonium nitrite) of 2, 2'b, and 5 gave the 2-chloropurine derivatives 3, 3'b, and 6, respectively. The selective ammonolysis at C6 (arylsulfonate with 3 or chloride with 6) and accompanying deprotection of the sugar moiety gave CldAdo (64-75% overall yield from 1).


Assuntos
Cladribina/análise , Cladribina/síntese química , Técnicas de Química Combinatória , Desoxiguanosina/química , Catálise , Cromatografia em Camada Fina , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Relação Estrutura-Atividade
3.
J Org Chem ; 68(2): 666-9, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12530909

RESUMO

Treatment of 9-(2,3,5-tri-O-acetyl-beta-d-ribofuranosyl)-2-amino-6-chloropurine (1) with TMS-Cl and benzyltriethylammonium nitrite (BTEA-NO2) in dichloromethane gave the crystalline 2,6-dichloropurine nucleoside 2, and acetyl chloride/BTEA-NO2 was equally effective ( approximately 85%, without chromatography). TMS-Br/tert-butyl nitrite/dibromomethane gave crystalline 2-bromo-6-chloro analogue 3 (85%). (Chloro or bromo)-dediazoniation of 3',5'-di-O-acetyl-2'-deoxyadenosine (4) gave the 6-[chloro (5, 63%) or bromo (6, 80%)]purine deoxynucleosides, and 2',3',5'-tri-O-acetyladenosine (8) was converted into the 6-chloropurine nucleoside 9 (71%).


Assuntos
Ácidos Nucleicos/química , Nucleosídeos de Purina/química , Nucleosídeos de Purina/síntese química , Cromatografia em Camada Fina , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nucleosídeos de Purina/análise
4.
J Org Chem ; 67(19): 6788-96, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12227811

RESUMO

Nonaqueous diazotization-dediazoniation of two types of aminopurine nucleoside derivatives has been investigated. Treatment of 9-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)-2-amino-6-chloropurine (1) with SbCl(3)/CH(2)Cl(2) was examined with benzyltriethylammonium (BTEA) chloride as a soluble halide source and tert-butyl nitrite (TBN) or sodium nitrite as the diazotization reagent. Optimized yields (>80%) of the 2,6-dichloropurine derivative were obtained with SbCl(3). Combinations with SbBr(3)/CH(2)Br(2) gave the 2-bromo-6-chloropurine product (>60%), and SbI(3)/CH(2)I(2)/THF gave the 2-iodo-6-chloropurine derivative (>45%). Antimony trihalide catalysis was highly beneficial. Mixed combinations (SbX(3)/CH(2)X'(2); X/X' = Br/Cl) gave mixtures of 2-(bromo, chloro, and hydro)-6-chloropurine derivatives that were dependent on reaction conditions. Addition of iodoacetic acid (IAA) resulted in diversion of purine radical species into a 2-iodo-6-chloropurine derivative with commensurate loss of other radical-derived products. This allowed evaluation of the efficiency of SbX(3)-promoted cation-derived dediazoniations relative to radical-derived reactions. Efficient conversions of adenosine, 2'-deoxyadenosine, and related adenine nucleosides into 6-halopurine derivatives of current interest were developed with analogous combinations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA