Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131125

RESUMO

Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site. The three sites were tested using a combination of molecular dynamics simulations and analysis of the inhibition of glycine transport of a series point mutated GlyT2 using electrophysiological methods. We demonstrate that the lipid allosteric site on GlyT2 is the most likely binding site for ORG25543. We also demonstrate that cholesterol derived from the cell membrane can form specific interactions with inhibitor-bound transporters to form an allosteric network of regulatory sites. These observations will guide the future design of GlyT2 inhibitors with the objective of minimising on-target side effects and improving the therapeutic window for the treatment of patients suffering from neuropathic pain.

2.
ACS Chem Neurosci ; 14(15): 2634-2647, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466545

RESUMO

Chronic pain is a complex condition that remains resistant to current therapeutics. We previously synthesized a series of N-acyl amino acids (NAAAs) that inhibit the glycine transporter, GlyT2, some of which are also positive allosteric modulators of glycine receptors (GlyRs). In this study, we have synthesized a library of NAAAs that contain a phenylene ring within the acyl tail with the objective of improving efficacy at both GlyT2 and GlyRs and also identifying compounds that are efficacious as dual-acting modulators to enhance glycine neurotransmission. The most efficacious positive allosteric modulator of GlyRs was 2-[8-(2-octylphenyl)octanoylamino]acetic acid (8-8 OPGly) which potentiates the EC5 for glycine activation of GlyRα1 by 1500% with an EC50 of 664 nM. Phenylene-containing NAAAs with a lysine headgroup were the most potent inhibitors of GlyT2 with (2S)-6-amino-2-[8-(3-octylphenyl)octanoylamino]hexanoic acid (8-8 MPLys) inhibiting GlyT2 with an IC50 of 32 nM. The optimal modulator across both proteins was (2S)-6-amino-2-[8-(2-octylphenyl)octanoylamino]hexanoic acid (8-8 OPLys), which inhibits GlyT2 with an IC50 of 192 nM and potentiates GlyRs by up to 335% at 1 µM. When tested in a dual GlyT2/GlyRα1 expression system, 8-8 OPLys caused the greatest reductions in the EC50 for glycine. This suggests that the synergistic effects of a dual-acting modulator cause greater enhancements in glycinergic activity compared to single-target modulators and may provide an alternate approach to the development of new non-opioid analgesics for the treatment of chronic pain.


Assuntos
Dor Crônica , Proteínas da Membrana Plasmática de Transporte de Glicina , Humanos , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Receptores de Glicina , Caproatos , Glicina/farmacologia , Glicina/metabolismo , Aminoácidos
3.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690444

RESUMO

Membrane cholesterol binds to and modulates the function of various SLC6 neurotransmitter transporters, including stabilizing the outward-facing conformation of the dopamine and serotonin transporters. Here, we investigate how cholesterol binds to GlyT2 (SLC6A5), modulates glycine transport rate, and influences bioactive lipid inhibition of GlyT2. Bioactive lipid inhibitors are analgesics that bind to an allosteric site accessible from the extracellular solution when GlyT2 adopts an outward-facing conformation. Using molecular dynamics simulations, mutagenesis, and cholesterol depletion experiments, we show that bioactive lipid inhibition of glycine transport is modulated by the recruitment of membrane cholesterol to a binding site formed by transmembrane helices 1, 5, and 7. Recruitment involves cholesterol flipping from its membrane orientation, and insertion of the 3' hydroxyl group into the cholesterol binding cavity, close to the allosteric site. The synergy between cholesterol and allosteric inhibitors provides a novel mechanism of inhibition and a potential avenue for the development of potent GlyT2 inhibitors as alternative therapeutics for the treatment of neuropathic pain and therapeutics that target other SLC6 transporters.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Glicina , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Transporte de Íons , Glicina/química , Glicina/metabolismo , Glicina/farmacologia , Colesterol/metabolismo , Lipídeos
4.
Front Mol Biosci ; 8: 734427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805268

RESUMO

Neurotransmitter sodium symporters (NSS) are a subfamily of SLC6 transporters responsible for regulating neurotransmitter signalling. They are a major target for psychoactive substances including antidepressants and drugs of abuse, prompting substantial research into their modulation and structure-function dynamics. Recently, a series of allosteric transport inhibitors have been identified, which may reduce side effect profiles, compared to orthosteric inhibitors. Allosteric inhibitors are also likely to provide different clearance kinetics compared to competitive inhibitors and potentially better clinical outcomes. Crystal structures and homology models have identified several allosteric modulatory sites on NSS including the vestibule allosteric site (VAS), lipid allosteric site (LAS) and cholesterol binding site (CHOL1). Whilst the architecture of eukaryotic NSS is generally well conserved there are differences in regions that form the VAS, LAS, and CHOL1. Here, we describe ligand-protein interactions that stabilize binding in each allosteric site and explore how differences between transporters could be exploited to generate NSS specific compounds with an emphasis on GlyT2 modulation.

5.
J Biol Chem ; 296: 100282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33450225

RESUMO

The role of lipids in modulating membrane protein function is an emerging and rapidly growing area of research. The rational design of lipids that target membrane proteins for the treatment of pathological conditions is a novel extension in this field and provides a step forward in our understanding of membrane transporters. Bioactive lipids show considerable promise as analgesics for the treatment of chronic pain and bind to a high-affinity allosteric-binding site on the human glycine transporter 2 (GlyT2 or SLC6A5). Here, we use a combination of medicinal chemistry, electrophysiology, and computational modeling to develop a rational structure-activity relationship for lipid inhibitors and demonstrate the key role of the lipid tail interactions for GlyT2 inhibition. Specifically, we examine how lipid inhibitor head group stereochemistry, tail length, and double-bond position promote enhanced inhibition. Overall, the l-stereoisomer is generally a better inhibitor than the d-stereoisomer, longer tail length correlates with greater potency, and the position of the double bond influences the activity of the inhibitor. We propose that the binding of the lipid inhibitor deep into the allosteric-binding pocket is critical for inhibition. Furthermore, this provides insight into the mechanism of inhibition of GlyT2 and highlights how lipids can modulate the activity of membrane proteins by binding to cavities between helices. The principles identified in this work have broader implications for the development of a larger class of compounds that could target SLC6 transporters for disease treatment.


Assuntos
Analgésicos/farmacologia , Dor Crônica/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Lipídeos/química , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação/efeitos dos fármacos , Fenômenos Biofísicos , Dor Crônica/genética , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Humanos , Lipídeos/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Xenopus laevis
6.
Elife ; 82019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31621581

RESUMO

The treatment of chronic pain is poorly managed by current analgesics, and there is a need for new classes of drugs. We recently developed a series of bioactive lipids that inhibit the human glycine transporter GlyT2 (SLC6A5) and provide analgesia in animal models of pain. Here, we have used functional analysis of mutant transporters combined with molecular dynamics simulations of lipid-transporter interactions to understand how these bioactive lipids interact with GlyT2. This study identifies a novel extracellular allosteric modulator site formed by a crevice between transmembrane domains 5, 7, and 8, and extracellular loop 4 of GlyT2. Knowledge of this site could be exploited further in the development of drugs to treat pain, and to identify other allosteric modulators of the SLC6 family of transporters.


Assuntos
Analgésicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Metabolismo dos Lipídeos , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
7.
J Med Chem ; 62(5): 2466-2484, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30714733

RESUMO

Inhibitors that target the glycine transporter 2, GlyT2, show promise as analgesics, but may be limited by their toxicity through complete or irreversible binding. Acyl-glycine inhibitors, however, are selective for GlyT2 and have been shown to provide analgesia in animal models of pain with minimal side effects, but are comparatively weak GlyT2 inhibitors. Here, we modify the simple acyl-glycine by synthesizing lipid analogues with a range of amino acid head groups in both l- and d-configurations, to produce nanomolar affinity, selective GlyT2 inhibitors. The potent inhibitor oleoyl-d-lysine (33) is also resistant to degradation in both human and rat plasma and liver microsomes, and is rapidly absorbed following an intraperitoneal injection to rats and readily crosses the blood-brain barrier. We demonstrate that 33 provides greater analgesia at lower doses, and does not possess the severe side effects of the very slowly reversible GlyT2 inhibitor, ORG25543 (2).


Assuntos
Aminoácidos/uso terapêutico , Analgésicos/uso terapêutico , Dor Crônica/prevenção & controle , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Aminoácidos/química , Aminoácidos/farmacocinética , Animais , Barreira Hematoencefálica , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Meia-Vida , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA