Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Ultrasound Med Biol ; 50(4): 494-501, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38218683

RESUMO

OBJECTIVE: Therapeutic ultrasound remains a highly discussed topic in physical therapy due to uncertainty between treatment regimens and biological benefits. Its impact on aged populations, who are vulnerable to insufficient healing after muscle injury because of sarcopenia, is understudied. Despite the coupling between muscle inflammation and regeneration, research on the immune response after therapeutic ultrasound is limited. The objective of this study was to evaluate structure, inflammatory cytokine signaling and immune cell infiltration after therapeutic ultrasound in young and aging murine muscle. METHODS: Young (6-week-old) and Adult (52-week-old) male and female mouse non-injured gastrocnemii were treated with either low-intensity pulsed ultrasound at 2 W/cm2 (∼0.243 MPa) or high-intensity pulsed focused ultrasound at 554 W/cm2 (∼5.96 MPa). Cytokine expression was evaluated at 1, 8 and 24 hours, cell infiltration was measured via flow cytometry at 1 and 24 hours and immunofluorescence assessed muscle fiber area, fibrosis and satellite cells at 24 hours after sonication. RESULTS: Low-intensity pulsed ultrasound induced an early, transient inflammatory response where interleukin (IL)-15 and macrophages (M2 > M1) were increased 1 hour post-sonication. High-intensity pulsed focused ultrasound caused a late, extended immune response where monocyte chemoattractant protein 1 (MCP-1), neutrophils, monocytes and macrophages (M1 > M2) were increased 24 hours post-sonication. Notably, these changes manifested solely in Young gastrocnemius. The Adult gastrocnemius exhibited decreased cytokine expression (IL-1α, IL-6, IL-15, macrophage colony-stimulating factor [M-CSF]) and no alteration in immune cell recruitment post-sonication. There was no damage to muscle structure. CONCLUSION: Therapeutic ultrasound induced a pressure-dependent inflammatory response that can augment or mitigate intrinsic muscle cytokine signaling and cell recruitment in adolescent or aged muscle, respectively.


Assuntos
Citocinas , Monócitos , Masculino , Feminino , Camundongos , Animais , Citocinas/metabolismo , Monócitos/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Imunidade
2.
JACC Basic Transl Sci ; 8(12): 1521-1535, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205346

RESUMO

Oxidative/inflammatory stresses due to cardiopulmonary bypass (CPB) cause prolonged microglia activation and cortical dysmaturation, thereby contributing to neurodevelopmental impairments in children with congenital heart disease (CHD). This study found that delivery of mesenchymal stromal cells (MSCs) via CPB minimizes microglial activation and neuronal apoptosis, with subsequent improvement of cortical dysmaturation and behavioral alteration after neonatal cardiac surgery. Furthermore, transcriptomic analyses suggest that exosome-derived miRNAs may be the key drivers of suppressed apoptosis and STAT3-mediated microglial activation. Our findings demonstrate that MSC treatment during cardiac surgery has significant translational potential for improving cortical dysmaturation and neurological impairment in children with CHD.

3.
Trends Neurosci ; 45(6): 459-470, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461727

RESUMO

The blood-brain barrier (BBB) continues to represent one of the most significant challenges for successful drug-based treatments of neurological disease. Mechanical modulation of the BBB using focused ultrasound (FUS) and microbubbles (MBs) has shown considerable promise in enhancing the delivery of therapeutics to the brain, but questions remain regarding possible long-term effects of such forced disruption. This review examines the evidence for inflammation associated with ultrasound-induced BBB disruption and potential strategies for managing such inflammatory effects to improve both the efficacy and safety of therapeutic ultrasound in neurological applications.


Assuntos
Barreira Hematoencefálica , Doenças Neuroinflamatórias , Transporte Biológico , Encéfalo , Humanos , Imageamento por Ressonância Magnética , Microbolhas
5.
J Biomed Nanotechnol ; 17(6): 1170-1183, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34167630

RESUMO

Exosomes, a component of extracellular vesicles, are shown to carry important small RNAs, mRNAs, protein, and bioactive lipid from parent cells and are found in most biological fluids. Investigators have demonstrated the importance of mesenchymal stem cells derived exosomes in repairing stroke lesions. However, exosomes from endothelial progenitor cells have not been tested in any stroke model, nor has there been an evaluation of whether these exosomes target/home to areas of pathology. Targeted delivery of intravenous administered exosomes has been a great challenge, and a targeted delivery system is lacking to deliver naïve (unmodified) exosomes from endothelial progenitor cells to the site of interest. Pulsed focused ultrasound is being used for therapeutic and experimental purposes. There has not been any report showing the use of low-intensity pulsed focused ultrasound to deliver exosomes to the site of interest in stroke models. In this proof of principle study, we have shown different parameters of pulsed focused ultrasound to deliver exosomes in the intact and stroke brain with or without intravenous administration of nanobubbles. The study results showed that administration of nanobubbles is detrimental to the brain structures (micro bleeding and white matter destruction) at peak negative pressure of >0.25 megapascal, despite enhanced delivery of intravenous administered exosomes. However, without nanobubbles, pulsed focused ultrasound enhances the delivery of exosomes in the stroke area without altering the brain structures.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Encéfalo/diagnóstico por imagem , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Ondas Ultrassônicas
6.
Cancers (Basel) ; 13(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801627

RESUMO

Focused ultrasound (FUS) has shown promise as a non-invasive treatment modality for solid malignancies. FUS targeting to tumors has been shown to initiate pro-inflammatory immune responses within the tumor microenvironment. Pulsed FUS (pFUS) can alter the expression of cytokines, chemokines, trophic factors, cell adhesion molecules, and immune cell phenotypes within tissues. Here, we investigated the molecular and immune cell effects of pFUS on murine B16 melanoma and 4T1 breast cancer flank tumors. Temporal changes following sonication were evaluated by proteomics, RNA-seq, flow-cytometry, and histological analyses. Proteomic profiling revealed molecular changes occurring over 24 h post-pFUS that were consistent with a shift toward inflamed tumor microenvironment. Over 5 days post-pFUS, tumor growth rates were significantly decreased while flow cytometric analysis revealed differences in the temporal migration of immune cells. Transcriptomic analyses following sonication identified differences in gene expression patterns between the two tumor types. Histological analyses further demonstrated reduction of proliferation marker, Ki-67 in 4T1, but not in B16 tumors, and activated cleaved-caspase 3 for apoptosis remained elevated up to 3 days post-pFUS in both tumor types. This study revealed diverse biological mechanisms following pFUS treatment and supports its use as a possible adjuvant to ablative tumor treatment to elicit enhanced anti-tumor responses and slow tumor growth.

7.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33906946

RESUMO

Intracarotid arterial hyperosmolar mannitol (ICAHM) blood-brain barrier disruption (BBBD) is effective and safe for delivery of therapeutics for central nervous system malignancies. ICAHM osmotically alters endothelial cells and tight junction integrity to achieve BBBD. However, occurrence of neuroinflammation following hemispheric BBBD by ICAHM remains unknown. Temporal proteomic changes in rat brains following ICAHM included increased damage-associated molecular patterns, cytokines, chemokines, trophic factors, and cell adhesion molecules, indicative of a sterile inflammatory response (SIR). Proteomic changes occurred within 5 min of ICAHM infusion and returned to baseline by 96 h. Transcriptomic analyses following ICAHM BBBD further supported an SIR. Immunohistochemistry revealed activated astrocytes, microglia, and macrophages. Moreover, proinflammatory proteins were elevated in serum, and proteomic and histological findings from the contralateral hemisphere demonstrated a less pronounced SIR, suggesting neuroinflammation beyond regions of ICAHM infusion. Collectively, these results demonstrate ICAHM induces a transient SIR that could potentially be harnessed for neuroimmunomodulation.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Imunidade Inata/genética , Inflamação/genética , Manitol/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Artérias Carótidas/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/sangue , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/genética , Quimiocinas/sangue , Citocinas/sangue , Células Endoteliais/efeitos dos fármacos , Humanos , Inflamação/sangue , Ratos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/genética
8.
Nat Neurosci ; 24(2): 245-258, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33462481

RESUMO

Cerebrovascular injuries can cause severe edema and inflammation that adversely affect human health. Here, we observed that recanalization after successful endovascular thrombectomy for acute large vessel occlusion was associated with cerebral edema and poor clinical outcomes in patients who experienced hemorrhagic transformation. To understand this process, we developed a cerebrovascular injury model using transcranial ultrasound that enabled spatiotemporal evaluation of resident and peripheral myeloid cells. We discovered that injurious and reparative responses diverged based on time and cellular origin. Resident microglia initially stabilized damaged vessels in a purinergic receptor-dependent manner, which was followed by an influx of myelomonocytic cells that caused severe edema. Prolonged blockade of myeloid cell recruitment with anti-adhesion molecule therapy prevented severe edema but also promoted neuronal destruction and fibrosis by interfering with vascular repair subsequently orchestrated by proinflammatory monocytes and proangiogenic repair-associated microglia (RAM). These data demonstrate how temporally distinct myeloid cell responses can contain, exacerbate and ultimately repair a cerebrovascular injury.


Assuntos
Encéfalo/imunologia , Inflamação/imunologia , AVC Isquêmico/imunologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Inflamação/diagnóstico por imagem , Inflamação/patologia , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , Imageamento por Ressonância Magnética , Camundongos , Microglia , Células Mieloides
9.
Theranostics ; 11(2): 602-613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391495

RESUMO

Mechanical forces from non-ablative pulsed focused ultrasound (pFUS) generate pro-inflammatory tumor microenvironments (TME), marked by increased cytokines, chemokines, and trophic factors, as well as immune cell infiltration and reduced tumor growth. pFUS also causes DNA damage within tumors, which is a potent activator of immunity and could contribute to changes in the TME. This study investigated mechanisms behind the mechanotransductive effects of pFUS causing DNA damage in several tumor cell types. Methods: 4T1 (murine breast tumor), B16 (murine melanoma), C6 (rat glioma), or MDA-MB-231 (human breast tumor) cells were sonicated in vitro (1.1MHz; 6MPa PNP; 10ms pulses; 10% duty cycle; 300 pulses). DNA damage was detected by TUNEL, apoptosis was measured by immunocytochemistry for cleaved caspase-3. Calcium, superoxide, and H2O2 were detected by fluorescent indicators and modulated by BAPTA-AM, mtTEMPOL, or Trolox, respectively. Results: pFUS increased TUNEL reactivity (range = 1.6-2.7-fold) in all cell types except C6 and did not induce apoptosis in any cell line. All lines displayed cytosolic Ca2+ transients during sonication. pFUS increased superoxide (range = 1.6-2.0-fold) and H2O2 (range = 2.3-2.8-fold) in all cell types except C6. BAPTA-AM blocked increased TUNEL reactivity, superoxide and H2O2 formation, while Trolox also blocked increased TUNEL reactivity increased after pFUS. mtTEMPOL allowed H2O2 formation and did not block increased TUNEL reactivity after pFUS. Unsonicated C6 cells had higher baseline concentrations of cytosolic Ca2+, superoxide, and H2O2, which were not associated with greater baseline TUNEL reactivity than the other cell lines. Conclusions: Mechanotransduction of pFUS directly induces DNA damage in tumor cells by cytosolic Ca2+ transients causing formation of superoxide and subsequently, H2O2. These results further suggest potential clinical utility for pFUS. However, the lack of pFUS-induced DNA damage in C6 cells demonstrates a range of potential tumor responses that may arise from physiological differences such as Ca2+ or redox homeostasis.


Assuntos
Neoplasias da Mama/patologia , Cálcio/metabolismo , Citosol/metabolismo , Dano ao DNA , Mecanotransdução Celular , Espécies Reativas de Oxigênio/metabolismo , Ondas Ultrassônicas , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Proliferação de Células , Feminino , Humanos , Células Tumorais Cultivadas
10.
J Cell Mol Med ; 24(22): 13278-13288, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33067927

RESUMO

Image-guided pulsed focused ultrasound (pFUS) is a non-invasive technique that can increase tropism of intravenously (IV)-infused mesenchymal stromal cells (MSC) to sonicated tissues. MSC have shown promise for cardiac regenerative medicine strategies but can be hampered by inefficient homing to the myocardium. This study sonicated the left ventricles (LV) in rats with magnetic resonance imaging (MRI)-guided pFUS and examined both proteomic responses and subsequent MSC tropism to treated myocardium. T2-weighted MRI was used for pFUS targeting of the entire LV. pFUS increased numerous pro- and anti-inflammatory cytokines, chemokines, and trophic factors and cell adhesion molecules in the myocardial microenvironment for up to 48 hours post-sonication. Cardiac troponin I and N-terminal pro-B-type natriuretic peptide were elevated in the serum and myocardium. Immunohistochemistry revealed transient hypoxia and immune cell infiltration in pFUS-targeted regions. Myocardial tropism of IV-infused human MSC following pFUS increased twofold-threefold compared with controls. Proteomic and histological changes in myocardium following pFUS suggested a reversible inflammatory and hypoxic response leading to increased tropism of MSC. MR-guided pFUS could represent a non-invasive modality to improve MSC therapies for cardiac regenerative medicine approaches.


Assuntos
Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Miocárdio/metabolismo , Ultrassonografia/métodos , Animais , Citocinas/metabolismo , Feminino , Ventrículos do Coração/metabolismo , Humanos , Hipóxia , Imuno-Histoquímica , Inflamação , Transplante de Células-Tronco Mesenquimais , Permeabilidade , Proteômica , Ratos , Ratos Sprague-Dawley
11.
Front Neurosci ; 14: 908, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982680

RESUMO

Blood-brain barrier opening (BBBO) with pulsed Focused Ultrasound (pFUS) and microbubbles (MB) has received increasing interest as a method for neurotherapeutics of the central nervous system. In general, conventional MRI [i.e., T2w, T2∗w, gadolinium (Gd) enhanced T1w] is used to monitor the effects of pFUS+MB on BBBO and/or assess whether sonication results in parenchymal damage. This study employed multimodal MRI techniques and 18F-Fludeoxyglucose (FDG) PET to evaluate the effects of single and multiple weekly pFUS+MB sessions on morphology and glucose utilization levels in the rat cortex and hippocampus. pFUS was performed with 0.548 MHz transducer with a slow infusion over 1 min of OptisonTM (5-8 × 107 MB) in nine focal points in cortex and four in hippocampus. During pFUS+MB treatment, Gd-T1w was performed at 3 T to confirm BBBO, along with subsequent T2w, T2∗w, DTI and glucose CEST (glucoCEST)-weighted imaging by high field 9.4 T and compared with FDG-PET and immunohistochemistry. Animals receiving a single pFUS+MB exhibited minimal hypointense voxels on T2∗w. Brains receiving multiple pFUS+MB treatments demonstrated persistent T2w and T2∗ abnormalities associated with changes in DTI and glucoCEST when compared to contralateral parenchyma. Decreased glucoCEST contrast was substantiated by FDG-PET in cortex following multiple sonications. Immunohistochemistry showed significantly dilated vessels and decreased neuronal glucose transporter (GLUT3) expression in sonicated cortex and hippocampus without changes in neuronal counts. These results suggest the importance to standardize MRI protocols in concert with advanced imaging techniques when evaluating long term effects of pFUS+MB BBBO in clinical trials for neurological diseases.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32850728

RESUMO

Non-ablative ultrasound (US)-based techniques to improve targeted tropism of systemically infused cell therapies, particularly mesenchymal stromal cell (MSC), have gained attention in recent years. Mechanotransduction following targeted US sonications have been shown to modulate tissue microenvironments by upregulating cytokines, chemokines, and trophic factors in addition to vascular cell adhesion molecules (CAM) that are necessary to promote tropism of MSC. While numerous US treatment parameters have demonstrated increased MSC homing, it remains unclear how the different mechanical US forces [i.e., acoustic radiation forces (ARF) or cavitation forces] influence tissue microenvironments. This study sonicated murine muscle tissue with pulsed focused ultrasound (pFUS) at 0.5 or 1.15 MHz each over a range of US intensities. Following sonication, tissue was assayed for the prostaglandins (PG) PGH2 and PGE2 as indicators of microenvironmental changes that would support MSC tropism. PGH2 and PGE2 levels were correlated to physical pFUS parameters and acoustic emissions measured by hydrophone. While ARF (pFUS with absence of cavitation signatures) was sufficient to increase PGH2 and PGE2, non-linear curve fitting revealed a frequency-independent relationship between prostaglandin production and mechanical index (MI), which accounts for increased cavitation probabilities of lower frequencies. The prostaglandin data suggested molecular changes in muscle would be particularly sensitive to cavitation. Therefore, low-intensity pulsed ultrasound (LIPUS) at 1 MHz was administered with low ARF (MI = 0.2) in combination with intravenous (IV) infusions of microbubble (MB) contrast agents. This combination upregulated prostaglandins and CAM without ultrasound-mediated microbubble destruction and ultimately promoted tropism of IV-infused MSC. This study revealed that accentuating non-destructive MB cavitation by US using parameters similar to diagnostic US contrast imaging increased MSC homing. Such approaches are particularly attractive to overcome clinical translation barriers of many still-experimental US parameters used in previous stem cell tropism studies.

13.
Cancers (Basel) ; 12(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033171

RESUMO

Image-guided focused ultrasound (FUS) has been successfully employed as an ablative treatment for solid malignancies by exposing immune cells to tumor debris/antigens, consequently inducing an immune response within the tumor microenvironment (TME). To date, immunomodulation effects of non-ablative pulsed-FUS (pFUS) on the TME are poorly understood. In this study, the temporal differences of cytokines, chemokines, and trophic factors (CCTFs) and immune cell populations induced by pFUS were interrogated in murine B16 melanoma or 4T1 breast cancer cells subcutaneously inoculated into C57BL/6 or BALB/c mice. Natural history growth characteristics during the course of 11 days showed a progressive increase in size for both tumors, and proteomic analysis revealed a shift toward an immunosuppressive TME. With respect to tumor natural growth, pFUS applied to tumors on days 1, 5, or 9 demonstrated a decrease in the growth rate 24 h post-sonication. Flow cytometry analysis of tumors, LNs, and Sp, as well as CCTF profiles, relative DNA damage, and adaptive T-cell localization within tumors, demonstrated dynamic innate and adaptive immune-modulation following pFUS in early time points of B16 tumors and in advanced 4T1 tumors. These results provide insight into the temporal dynamics in the treatment-associated TME, which could be used to evaluate an immunomodulatory approach in different tumor types.

14.
Theranostics ; 9(19): 5517-5531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534500

RESUMO

Pulsed focused ultrasound (pFUS) technology is being developed for clinical neuro/immune modulation and regenerative medicine. Biological signal transduction of pFUS forces can require mechanosensitive or voltage-gated plasma membrane ion channels. Previous studies suggested pFUS is capable of activating either channel type, but their mechanistic relationship remains ambiguous. We demonstrated pFUS bioeffects increased mesenchymal stem cell tropism (MSC) by altering molecular microenvironments through cyclooxygenase-2 (COX2)-dependent pathways. This study explored specific relationships between mechanosensitive and voltage-gated Ca2+ channels (VGCC) to initiate pFUS bioeffects that increase stem cell tropism. Methods: Murine kidneys and hamstring were given pFUS (1.15 or 1.125 MHz; 4MPa peak rarefactional pressure) under ultrasound or magnetic resonance imaging guidance. Cavitation and tissue displacement were measure by hydrophone and ultrasound radiofrequency data, respectively. Elastic modeling was performed from displacement measurements. COX2 expression and MSC tropism were evaluated in the presence of pharmacological ion channel inhibitors or in transient-receptor-potential-channel-1 (TRPC1)-deficient mice. Immunohistochemistry and co-immunoprecipitation examined physical channel relationships. Fluorescent ionophore imaging of cultured C2C12 muscle cells or TCMK1 kidney cells probed physiological interactions. Results: pFUS induced tissue deformations resulting in kPa-scale forces suggesting mechanical activation of pFUS-induced bioeffects. Inhibiting VGCC or TRPC1 in vivo blocked pFUS-induced COX2 upregulation and MSC tropism to kidneys and muscle. A TRPC1/VGCC complex was observed in plasma membranes. VGCC or TRPC1 suppression blocked pFUS-induced Ca2+ transients in TCMK1 and C2C12 cells. Additionally, Ca2+ transients were blocked by reducing transmembrane Na+ potentials and observed Na+ transients were diminished by genetic TRPC1 suppression. Conclusion: This study suggests that pFUS acoustic radiation forces mechanically activate a Na+-containing TRPC1 current upstream of VGCC rather than directly opening VGCC. The electrogenic function of TRPC1 provides potential mechanistic insight into other pFUS techniques for physiological modulation and optimization strategies for clinical implementation.


Assuntos
Canais de Cálcio/metabolismo , Rim/metabolismo , Músculo Esquelético/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Ciclo-Oxigenase 2/metabolismo , Feminino , Rim/diagnóstico por imagem , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Músculo Esquelético/diagnóstico por imagem , Sódio/metabolismo , Canais de Cátion TRPC/genética , Ondas Ultrassônicas , Ultrassonografia
15.
Ultrasound Med Biol ; 45(12): 3232-3245, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31530419

RESUMO

Non-ablative pulsed focused ultrasound (pFUS) targets non-thermal forces that activate local molecular and cellular immune responses. Optimal parameters to stimulate immunotherapeutic tumor microenvironments (TME) and responses in different tumor types remain uninvestigated. Flank B16 murine melanoma and 4T1 breast tumors received 1 MHz pFUS at 1-8 MPa peak negative pressures (PNP) and were analyzed 24 hr post-sonication. Necrosis or hemorrhage were unaltered in both tumors, but pFUS induced DNA strand breaks in tumor cells at PNP ≥6 MPa. pFUS at >4 MPa suppressed anti-inflammatory cytokines in B16 tumors. pFUS to 4T1 tumors decreased anti-inflammatory cytokines and increased pro-inflammatory cytokines and cell adhesion molecules. pFUS at 6 MPa increased calreticulin and alterations in check-point proteins along with tumoral and splenic immune cell changes that could be consistent with a shift towards an anti-TME. pFUS-induced TME alterations shows promise in generating anti-tumor immune responses, but non-uniform responses between tumor types require additional investigation to assess pFUS as a suitable anti-tumor therapy.


Assuntos
Neoplasias da Mama/metabolismo , Melanoma/metabolismo , Proteômica/métodos , Microambiente Tumoral , Ondas Ultrassônicas , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
16.
J Neuroinflammation ; 16(1): 155, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345243

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound combined with the infusion of microbubbles (pFUS+MB) induces transient blood-brain barrier opening (BBBO) in targeted regions. pFUS+MB, through the facilitation of neurotherapeutics' delivery, has been advocated as an adjuvant treatment for neurodegenerative diseases and malignancies. Sterile neuroinflammation has been recently described following pFUS+MB BBBO. In this study, we used PET imaging with [18F]-DPA714, a biomarker of translocator protein (TSPO), to assess for neuroinflammatory changes following single and multiple pFUS+MB sessions. METHODS: Three groups of Sprague-Dawley female rats received MRI-guided pFUS+MB (Optison™; 5-8 × 107 MB/rat) treatments to the left frontal cortex and right hippocampus. Group A rats were sonicated once. Group B rats were sonicated twice and group C rats were sonicated six times on weekly basis. Passive cavitation detection feedback (PCD) controlled the peak negative pressure during sonication. We performed T1-weighted scans immediately after sonication to assess efficiency of BBBO and T2*-weighted scans to evaluate for hypointense voxels. [18F]DPA-714 PET/CT scans were acquired after the BBB had closed, 24 h after sonication in group A and within an average of 10 days from the last sonication in groups B and C. Ratios of T1 enhancement, T2* values, and [18F]DPA-714 percent injected dose/cc (%ID/cc) values in the targeted areas to the contralateral brain were calculated. Histological assessment for microglial activation/astrocytosis was performed. RESULTS: In all groups, [18F]DPA-714 binding was increased at the sonicated compared to non-sonicated brain (%ID/cc ratios > 1). Immunohistopathology showed increased staining for microglial and astrocytic markers in the sonicated frontal cortex compared to contralateral brain and to a lesser extent in the sonicated hippocampus. Using MRI, we documented BBB disruption immediately after sonication with resolution of BBBO 24 h later. We found more T2* hypointense voxels with increasing number of sonications. In a longitudinal group of animals imaged after two and after six sonications, there was no cumulative increase of neuroinflammation on PET. CONCLUSION: Using [18F]DPA-714 PET, we documented in vivo neuroinflammatory changes in association with pFUS+MB. Our protocol (utilizing PCD feedback to minimize damage) resulted in neuroinflammation visualized 24 h post one sonication. Our findings were supported by immunohistochemistry showing microglial activation and astrocytosis. Experimental sonication parameters intended for BBB disruption should be evaluated for neuroinflammatory sequelae prior to implementation in clinical trials.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Microglia/metabolismo , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Feminino , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Ratos , Ratos Sprague-Dawley , Sonicação
17.
Toxins (Basel) ; 10(12)2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486274

RESUMO

Chlorotoxin (CTX) is a 36-amino-acid disulfide-containing peptide derived from the venom of the scorpion Leiurus quinquestriatus. CTX alters physiology in numerous ways. It interacts with voltage gated chloride channels, Annexin-2, and matrix metalloproteinase-2 (MMP-2). CTX-based bioconjugates have been widely subjected to phase I/II clinical trials and have shown substantial promise. Many studies have demonstrated that CTX preferentially binds to neuroectodermal tumors, such as glioblastoma, without cross-reactivity to normal brain cells. With its ability to penetrate the blood-brain-barrier (BBB) and its tyrosine residue allows covalent conjugation with functional moieties, CTX is an attractive platform to explore development of diagnostic and therapeutic agents for gliomas. In this review, we outline CTX structure and its molecular targets, summarize molecular variations of CTX developed for glioma imaging, and discuss future trends and perspectives for CTX conjugates as a theranostic agent.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Venenos de Escorpião/uso terapêutico , Animais , Humanos , Imagem Molecular , Imagem Multimodal , Venenos de Escorpião/química
18.
Theranostics ; 8(17): 4837-4855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279741

RESUMO

Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound (pFUS) combined with microbubbles (MB) contrast agent infusion has been shown to transiently disrupt the blood-brain barrier (BBBD), increasing the delivery of neurotherapeutics to treat central nervous system (CNS) diseases. pFUS interaction with the intravascular MB results in acoustic cavitation forces passing through the neurovascular unit (NVU), inducing BBBD detected on contrast-enhanced MRI. Multiple pFUS+MB exposures in Alzheimer's disease (AD) models are being investigated as a method to clear amyloid plaques by activated microglia or infiltrating immune cells. Since it has been reported that pFUS+MB can induce a sterile inflammatory response (SIR) [1-5] in the rat, the goal of this study was to investigate the potential long-term effects of SIR in the brain following single and six weekly sonications by serial high-resolution MRI and pathology. Methods: Female Sprague Dawley rats weighing 217±16.6 g prior to sonication received bromo-deoxyuridine (BrdU) to tag proliferating cells in the brain. pFUS was performed at 548 kHz, ultrasound burst 10 ms and initial peak negative pressure of 0.3 MPa (in water) for 120 s coupled with a slow infusion of ~460 µL/kg (5-8×107 MB) that started 30 s before and 30 s during sonication. Nine 2 mm focal regions in the left cortex and four regions over the right hippocampus were treated with pFUS+MB. Serial high-resolution brain MRIs at 3 T and 9.4 T were obtained following a single or during the course of six weekly pFUS+MB resulting in BBBD in the left cortex and the right hippocampus. Animals were monitored over 7 to 13 weeks and imaging results were compared to histology. Results: Fewer than half of the rats receiving a single pFUS+MB exposure displayed hypointense voxels on T2*-weighted (w) MRI at week 7 or 13 in the cortex or hippocampus without differences compared to the contralateral side on histograms of T2* maps. Single sonicated rats had evidence of limited microglia activation on pathology compared to the contralateral hemisphere. Six weekly pFUS+MB treatments resulted in pathological changes on T2*w images with multiple hypointense regions, cortical atrophy, along with 50% of rats having persistent BBBD and astrogliosis by MRI. Pathologic analysis of the multiple sonicated animals demonstrated the presence of metallophagocytic Prussian blue-positive cells in the parenchyma with significantly (p<0.05) increased areas of activated astrocytes and microglia, and high numbers of systemic infiltrating CD68+ macrophages along with BrdU+ cells compared to contralateral brain. In addition, multiple treatments caused an increase in the number of hyperphosphorylated Tau (pTau)-positive neurons containing neurofibrillary tangles (NFT) in the sonicated cortex but not in the hippocampus when compared to contralateral brain, which was confirmed by Western blot (WB) (p<0.04). Conclusions: The repeated SIR following multiple pFUS+MB treatments could contribute to changes on MR imaging including persistent BBBD, cortical atrophy, and hypointense voxels on T2w and T2*w images consistent with pathological injury. Moreover, areas of astrogliosis, activated microglia, along with higher numbers of CD68+ infiltrating macrophages and BrdU+ cells were detected in multiple sonicated areas of the cortex and hippocampus. Elevations in pTau and NFT were detected in neurons of the multiple sonicated cortex. Minimal changes on MRI and histology were observed in single pFUS+MB-treated rats at 7 and 13 weeks post sonication. In comparison, animals that received 6 weekly sonications demonstrated evidence on MRI and histology of vascular damage, inflammation and neurodegeneration associated with the NVU commonly observed in trauma. Further investigation is recommended of the long-term effects of multiple pFUS+MB in clinical trials.


Assuntos
Córtex Cerebral/patologia , Córtex Cerebral/efeitos da radiação , Hipocampo/patologia , Hipocampo/efeitos da radiação , Microbolhas/efeitos adversos , Ultrassonografia/efeitos adversos , Animais , Histocitoquímica , Estudos Longitudinais , Imageamento por Ressonância Magnética , Ratos Sprague-Dawley
19.
J Cell Mol Med ; 22(12): 6015-6025, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216653

RESUMO

Mesenchymal stromal cell (MSC) therapies combined with renal pulsed focused ultrasound (pFUS) pretreatment increase MSC homing and improve cisplatin-induced acute kidney injury (AKI) better than MSC alone. However, mechanisms underlying improved outcomes remain unknown. We hypothesize pFUS up-regulates renal interferon-γ (IFNγ) and stimulates MSC to produce interleukin-10 (IL-10) after migrating to kidneys. To demonstrate initially, MSC cultured with IFNγ up-regulated IL-10. More MSC-derived IL-10 was detected in kidneys when IFNγ-stimulated MSC were infused and they improved AKI better than unstimulated MSC. Next, IFNγ-knockout mice with AKI received pFUS+MSC, but MSC-derived IL-10 expression and AKI were similar to using MSC alone. AKI in wild-type mice receiving pFUS and IL-10-deficient MSC was also unimproved compared to administering IL-10-deficient MSC alone. Indoleamine 2,3-dioxygenase (IDO), an anti-inflammatory enzyme up-regulated in MSC by IFNγ, was up-regulated during AKI, but was not further elevated in MSC from pFUS-treated kidneys, suggesting that IDO is not involved in improved AKI healing by pFUS+MSC. These data suggest IFNγ is up-regulated by pFUS and after i.v.-infused MSC home to pFUS-treated kidneys, IFNγ stimulates additional IL-10 production by MSC to improve AKI. Analogous mechanisms of ultrasound-treated tissue microenvironments stimulating therapeutic MSC may exist in other pathologies where adjuvant ultrasound techniques are successful.


Assuntos
Injúria Renal Aguda/terapia , Interferon gama/genética , Interleucina-10/genética , Transplante de Células-Tronco Mesenquimais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Animais , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Humanos , Rim/lesões , Rim/metabolismo , Rim/patologia , Células-Tronco Mesenquimais , Camundongos , Camundongos Knockout , Ondas Ultrassônicas
20.
Theranostics ; 8(8): 2245-2248, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29722362

RESUMO

This editorial highlights the findings of McMahon [1] and demonstrates the need for careful attention to experimental conditions that influence microbubble concentration and pharmacokinetics contributed to focused ultrasound-induced blood brain barrier opening and sterile inflammation.


Assuntos
Barreira Hematoencefálica , Microbolhas , Atenção , Humanos , Inflamação , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA