Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Stem Cell ; 30(2): 207-218.e7, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652946

RESUMO

In response to infections and stress, hematopoiesis rapidly enhances blood and immune cell production. The stage within the hematopoietic hierarchy that accounts for this regeneration is unclear under natural conditions in vivo. We analyzed by differentiation tracing, using inducible Tie2- or Flt3-driven Cre recombinase, the roles of mouse hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs). During polymicrobial sepsis, HSCs responded transcriptionally and increased their proliferation and cell death, yet HSC differentiation rates remained at steady-state levels. HSC differentiation was also independent from the ablation of various cellular compartments-bleeding, the antibody-mediated ablation of granulocytes or B lymphocytes, and genetic lymphocyte deficiency. By marked contrast, the fate mapping of MPPs in polymicrobial sepsis identified these cells as a major source for accelerated myeloid cell production. The regulation of blood and immune cell homeostasis by progenitors rather than stem cells may ensure a rapid response while preserving the integrity of the HSC population.


Assuntos
Células-Tronco Hematopoéticas , Sepse , Animais , Camundongos , Diferenciação Celular/genética , Linhagem da Célula , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Integrases/metabolismo , Células-Tronco Multipotentes , Sepse/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Receptor TIE-2/metabolismo
2.
Lipids Health Dis ; 21(1): 91, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153592

RESUMO

BACKGROUND: Essential phospholipids (EPL) have hepatoprotective effects across many liver diseases/conditions. The impact of EPL on hepatocyte function in vitro was investigated. METHODS: Effects of noncytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), and its constituents, polyenylphosphatidylcholine (PPC) and phosphatidylinositol (PI) (both at 0.1 and 1 mg/ml), on membrane fluidity, apoptosis and extracellular transport versus controls were investigated in human hepatocyte cell lines (HepG2, HepaRG, steatotic HepaRG).  RESULTS: Significantly increased membrane fluidity occurred with all 3 phospholipids (PLs) in HepG2 cultures, and with PI (1 mg/ml) in steatotic HepaRG cells. Significantly decreased tamoxifen-induced apoptosis was observed in HepG2 cells with EPL, PPC and PI. Breast cancer resistance protein (BCRP) activity was significantly increased by EPL and PI in HepG2 cells. Multidrug resistance-associated protein 2 (MRP-2) activity was unaffected by any PL in HepG2 cells, and significantly increased by EPL, PI and PPC (1 mg/ml) in HepaRG cells, and by PI (1 mg/ml) in steatotic HepaRG cells. Bile salt export protein (BSEP) activity in HepG2 cells and steatotic HepaRG cells was significantly increased by EPL (0.25 mg/ml), and PPC (both concentrations), but not by PI. The PLs had no effects on HepaRG cell BSEP activity. P-glycoprotein (P-GP) activity was significantly increased by all compounds in HepG2 cells. PI (1 mg/ml) significantly increased P-GP activity in HepaRG and steatotic HepaRG cells. CONCLUSIONS: EPL, PPC, and PI increased hepatocyte membrane fluidity, decreased apoptosis and increased hepatocellular export, all of which may improve liver function. These in-vitro investigations provide valuable insights into the mechanism of action of EPL.


Assuntos
Fígado Gorduroso , Proteínas de Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Fosfatidilinositóis/metabolismo , Tamoxifeno/efeitos adversos , Tamoxifeno/metabolismo
3.
Nat Commun ; 13(1): 3135, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668108

RESUMO

Patient-derived organoids resemble the biology of tissues and tumors, enabling ex vivo modeling of human diseases. They have heterogeneous morphologies with unclear biological causes and relationship to treatment response. Here, we use high-throughput, image-based profiling to quantify phenotypes of over 5 million individual colorectal cancer organoids after treatment with >500 small molecules. Integration of data using multi-omics modeling identifies axes of morphological variation across organoids: Organoid size is linked to IGF1 receptor signaling, and cystic vs. solid organoid architecture is associated with LGR5 + stemness. Treatment-induced organoid morphology reflects organoid viability, drug mechanism of action, and is biologically interpretable. Inhibition of MEK leads to cystic reorganization of organoids and increases expression of LGR5, while inhibition of mTOR induces IGF1 receptor signaling. In conclusion, we identify shared axes of variation for colorectal cancer organoid morphology, their underlying biological mechanisms, and pharmacological interventions with the ability to move organoids along them.


Assuntos
Neoplasias Colorretais , Organoides , Neoplasias Colorretais/genética , Humanos , Organoides/patologia , Fenótipo , Transdução de Sinais
5.
ACS Nano ; 13(8): 8749-8759, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31322856

RESUMO

The surface of proteins is heterogeneous with sophisticated but precise hydrophobic and hydrophilic patches, which is essential for their diverse biological functions. To emulate such distinct surface patterns on macromolecules, we used rigid spherical synthetic dendrimers (polyphenylene dendrimers) to provide controlled amphiphilic surface patches with molecular precision. We identified an optimal spatial arrangement of these patches on certain dendrimers that enabled their interaction with human adenovirus 5 (Ad5). Patchy dendrimers bound to the surface of Ad5 formed a synthetic polymer corona that greatly altered various host interactions of Ad5 as well as in vivo distribution. The dendrimer corona (1) improved the ability of Ad5-derived gene transfer vectors to transduce cells deficient for the primary Ad5 cell membrane receptor and (2) modulated the binding of Ad5 to blood coagulation factor X, one of the most critical virus-host interactions in the bloodstream. It significantly enhanced the transduction efficiency of Ad5 while also protecting it from neutralization by natural antibodies and the complement system in human whole blood. Ad5 with a synthetic dendrimer corona revealed profoundly altered in vivo distribution, improved transduction of heart, and dampened vector sequestration by liver and spleen. We propose the design of bioactive polymers that bind protein surfaces solely based on their amphiphilic surface patches and protect against a naturally occurring protein corona, which is highly attractive to improve Ad5-based in vivo gene therapy applications.


Assuntos
Adenovírus Humanos/genética , Dendrímeros/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Transdução Genética , Adenovírus Humanos/efeitos dos fármacos , Animais , Proteínas do Capsídeo/química , Dendrímeros/química , Vetores Genéticos/química , Vetores Genéticos/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Fígado/química , Fígado/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Receptores Virais/antagonistas & inibidores , Receptores Virais/química
6.
Clin Immunol ; 174: 73-83, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27847316

RESUMO

Allergic diseases have emerged as a major health care burden, especially in the western hemisphere. They are defined by overshooting reactions of an aberrant immune system to harmless exogenous stimuli. The TH1/TH2 paradigm assumes that a dominance of TH2 cell activation and an inadequate TH1 cell response are responsible for the development of allergies. However, the characterization of additional T helper cell subpopulations such as TH9, TH17, TH22, THGM-CSF and their interplay with regulatory T cells suggest further layers of complexity. This review summarizes state-of-the-art knowledge on T cell diversity and their induction, while revisiting the TH1/TH2 paradigm. With respect to these numerous contributors, it offers a new perspective on the pathogenesis of asthma, allergic rhinitis (AR) and atopic dermatitis (AD) incorporating recent discoveries in the field of T cell plasticity.


Assuntos
Hipersensibilidade/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Interleucina-9/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA