Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 32(23): 5022-5030.e7, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36384138

RESUMO

It is generally thought that children learn more efficiently than adults. One way to accomplish this is to have learning rapidly stabilized such that it is not interfered with by subsequent learning. Although γ-aminobutyric acid (GABA) plays an important role in stabilization, it has been reported that GABAergic inhibitory processing is not fully matured yet in children compared with adults. Does this finding indicate that more efficient learning in children is not due to more rapid stabilization? Here, we measured the concentration of GABA in early visual cortical areas in a time-resolved fashion before, during, and after visual perceptual learning (VPL) within subjects using functional MRS (fMRS) and then compared the concentrations between children (8 to 11 years old) and adults (18 to 35 years old). We found that children exhibited a rapid boost of GABA during visual training that persisted after training ended, whereas the concentration of GABA in adults remained unchanged. Moreover, behavioral experiments showed that children exhibited rapid development of resilience to retrograde interference, which indicates that children stabilize VPL much faster than adults. These results together suggest that inhibitory processing in children's brains is more dynamic and adapts more quickly to stabilize learning than in adults, making learning more efficient in children.


Assuntos
Aprendizagem , Córtex Visual , Ácido gama-Aminobutírico , Adolescente , Adulto , Criança , Humanos , Adulto Jovem , Ácido gama-Aminobutírico/fisiologia , Córtex Visual/fisiologia
2.
Curr Biol ; 31(2): 427-432.e5, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33212018

RESUMO

It has remained uncertain whether the mechanisms of visual perceptual learning (VPL)1-4 remain stable across the lifespan or undergo developmental changes. This uncertainty largely originates from missing results about the mechanisms of VPL in healthy children. We here investigated the mechanisms of task-irrelevant VPL in healthy elementary school age children (7-10 years old) and compared their results to healthy young adults (18-31 years old). Subjects performed a rapid-serial-visual-presentation (RSVP) task at central fixation over the course of several daily sessions while coherent motion was merely exposed as a task-irrelevant feature in the visual periphery either at threshold or suprathreshold levels for coherent motion detection. As a result of this repeated exposure, children and adults both showed enhanced discrimination performance for the threshold task-irrelevant feature as in previous studies with adults.5-8 However, adults demonstrated a decreased performance for the suprathreshold task-irrelevant feature whereas children increased performance. One possible explanation for this difference is that children cannot effectively suppress salient task-irrelevant features because of weaker selective attention ability compared to that of adults.9-11 However, our results revealed to the contrary that children with stronger selective attention ability, as measured by the useful field of view (UFOV) test, showed greater increases in performance for the suprathreshold task-irrelevant feature. Together, these results suggest that the mechanisms of VPL change dramatically from childhood to adulthood due to a change in the way learners handle salient task-irrelevant features.


Assuntos
Aprendizagem/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Fatores Etários , Criança , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA