Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurooncol Adv ; 6(1): vdae029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550394

RESUMO

Background: Diffuse intrinsic pontine gliomas (DIPGs) pose a significant challenge as a highly aggressive and currently incurable form of pediatric brain cancer, necessitating the development of novel therapeutic strategies. Omacetaxine, an FDA-approved protein synthesis inhibitor for treating certain hematological malignancies, was investigated for its potential antitumor effects against preclinical DIPG models. Methods: We employed primary DIPG cultures to study omacetaxine's cytotoxicity and its impact on colony formation. Annexin V staining and flow cytometry assessed apoptosis. Wound healing assays evaluated migration, while western blotting determined inhibition of oncogenic proteins. We tested omacetaxine's therapeutic efficacy in an orthotopic DIPG model and assessed brain penetration using mass spectrometry. Results: We found a pronounced cytotoxic activity of omacetaxine against DIPG neurospheres, with low IC50 values of approximately 20 nM. Omacetaxine exerted its anti-proliferative effect by inhibiting protein synthesis and the induction of apoptotic pathways, evidenced by significant elevated levels of cleaved caspase 3 and cleaved PARP, both key markers of apoptosis. Omacetaxine effectively targeted oncogenic players such as PDGFRα and PI3K without additional effects on the mTOR signaling pathway. Furthermore, our study revealed the inhibitory effects of omacetaxine on cell migration, and a significant reduction in integrin/FAK signaling, which plays a crucial role in tumor progression and metastasis. Conclusions: Despite these promising in vitro effects, omacetaxine's efficacy in an orthotopic DIPG model was limited due to inadequate penetration across the blood-brain barrier. As such, further research and advancements are crucial to improve the drug's brain penetration, thus enhancing its overall therapeutic potential.

2.
Cell Rep ; 35(2): 108994, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852836

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an aggressive and incurable childhood brain tumor for which new treatments are needed. CBL0137 is an anti-cancer compound developed from quinacrine that targets facilitates chromatin transcription (FACT), a chromatin remodeling complex involved in transcription, replication, and DNA repair. We show that CBL0137 displays profound cytotoxic activity against a panel of patient-derived DIPG cultures by restoring tumor suppressor TP53 and Rb activity. Moreover, in an orthotopic model of DIPG, treatment with CBL0137 significantly extends animal survival. The FACT subunit SPT16 is found to directly interact with H3.3K27M, and treatment with CBL0137 restores both histone H3 acetylation and trimethylation. Combined treatment of CBL0137 with the histone deacetylase inhibitor panobinostat leads to inhibition of the Rb/E2F1 pathway and induction of apoptosis. The combination of CBL0137 and panobinostat significantly prolongs the survival of mice bearing DIPG orthografts, suggesting a potential treatment strategy for DIPG.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Proteínas de Ligação a DNA/genética , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Epigênese Genética , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/genética , Neuroglia/efeitos dos fármacos , Fatores de Elongação da Transcrição/genética , Acetilação , Animais , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/mortalidade , Neoplasias do Tronco Encefálico/patologia , Carbazóis/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Criança , Cromatina/química , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/mortalidade , Glioma Pontino Intrínseco Difuso/patologia , Sinergismo Farmacológico , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Epigenoma , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/antagonistas & inibidores , Histonas/metabolismo , Humanos , Metilação , Camundongos , Neuroglia/metabolismo , Neuroglia/patologia , Panobinostat/farmacologia , Cultura Primária de Células , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Análise de Sobrevida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncologist ; 24(8): e765-e774, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30808815

RESUMO

BACKGROUND: There are limited data to predict which novel childhood cancer therapies are likely to be successful. To help rectify this, we sought to identify the factors that impact the success of phase II clinical trials for pediatric malignancies. MATERIALS AND METHODS: We examined the impact of 24 preclinical and trial design variables for their influence on 132 phase II pediatric oncology clinical trials. Success was determined by an objective assessment of patient response, with data analyzed using Fisher's exact test, Pearson's chi-square test, and logistic regression models. RESULTS: Trials that evaluated patients with a single histological cancer type were more successful than those that assessed multiple different cancer types (68% vs. 47%, 27%, and 17% for 1, 2-3, 4-7, and 8+; p < .005). Trials on liquid or extracranial solid tumors were more successful than central nervous system or combined trials (70%, 60%, 38%, and 24%; p < .005), and trials of combination therapies were more successful than single agents (71% vs. 28%; p < .005). Trials that added therapies to standard treatment backbones were more successful than trials testing novel therapies alone or those that incorporated novel agents (p < .005), and trials initiated based on the results of adult studies were less likely to succeed (p < .05). For 61% of trials (80/132), we were unable to locate any relevant preclinical findings to support the trial. When preclinical studies were carried out (52/132), there was no evidence that the conduct of any preclinical experiments made the trial more likely to succeed (p < .005). CONCLUSION: Phase II pediatric oncology clinical trials that examine a single cancer type and use combination therapies have the highest possibility of clinical success. Trials building upon a standard treatment regimen were also more successful. The conduct of preclinical experiments did not improve clinical success, emphasizing the need for a better understanding of the translational relevance of current preclinical testing paradigms. IMPLICATIONS FOR PRACTICE: To improve the clinical outcomes of phase II childhood cancer trials, this study identified factors impacting clinical success. These results have the potential to impact not only the design of future clinical trials but also the assessment of preclinical studies moving forward. This work found that trials on one histological cancer type and trials testing combination therapies had the highest possibility of success. Incorporation of novel therapies into standard treatment backbones led to higher success rates than testing novel therapies alone. This study found that most trials had no preclinical evidence to support initiation, and even when preclinical studies were available, they did not result in improved success.


Assuntos
Ensaios Clínicos Fase II como Assunto/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Criança , Guias como Assunto , Humanos , Pediatria/métodos , Projetos de Pesquisa
5.
J Neurooncol ; 141(2): 265, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30484110

RESUMO

There are two errors and one omission in the original article. Author Gottardo's correct name is Nicholas G. Gottardo, author Hulleman's correct affiliation is no. 3 (VUMC, Amsterdam), and the Acknowledgements should include the following sentence: "We would like to thank Dr Angel Montero Carcaboso (Hospital Sant Joan de Deu, Barcelona, Spain) for generously supplying the HSJD-DIPG007 cells."

6.
J Neurooncol ; 141(2): 253-263, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30446898

RESUMO

PURPOSE: Diffuse intrinsic pontine glioma is the most aggressive form of high grade glioma in children with no effective therapies. There have been no improvements in survival in part due poor understanding of underlying biology, and lack of representative in vitro and in vivo models. Recently, it has been found feasible to use both biopsy and autopsy tumors to generate cultures and xenograft models. METHODS: To further model development, we evaluated the collective international experience from 8 collaborating centers to develop DIPG pre-clinical models from patient-derived autopsies and biopsies. Univariate and multivariate analysis was performed to determine key factors associated with the success of in vitro and in vivo PDX development. RESULTS: In vitro cultures were successfully established from 57% of samples (84.2% of biopsies and 38.2% of autopsies). Samples transferred in DMEM media were more likely to establish successful culture than those transported in Hibernate A. In vitro cultures were more successful from biopsies (84.2%) compared with autopsies (38.2%) and as monolayer on laminin-coated plates than as neurospheres. Primary cultures successfully established from autopsy samples were more likely to engraft in animal models than cultures established from biopsies (86.7% vs. 47.4%). Collectively, tumor engraftment was more successful when DIPG samples were directly implanted in mice (68%), rather than after culturing (40.7%). CONCLUSION: This multi-center study provides valuable information on the success rate of establishing patient-derived pre-clinical models of DIPG. The results can lead to further optimization of DIPG model development and ultimately assist in the investigation of new therapies for this aggressive pediatric brain tumor.


Assuntos
Neoplasias do Tronco Encefálico/fisiopatologia , Neoplasias do Tronco Encefálico/terapia , Glioma/fisiopatologia , Glioma/terapia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias do Tronco Encefálico/genética , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Glioma/genética , Histonas/genética , Humanos , Camundongos , Mutação , Estudos Retrospectivos
7.
Cancer Biol Ther ; 19(12): 1078-1087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30299205

RESUMO

Pediatric high grade gliomas (HGG) are primary brain malignancies that result in significant morbidity and mortality. One of the challenges in their treatment is inter- and intra-tumoral heterogeneity. Precision medicine approaches have the potential to enhance diagnostic, prognostic and/or therapeutic information. In this case study we describe the molecular characterization of a pediatric HGG and the use of an integrated approach based on genomic, in vitro and in vivo testing to identify actionable targets and treatment options. Molecular analysis based on WGS performed on initial and recurrent tumor biopsies revealed mutations in TP53, TSC1 and CIC genes, focal amplification of MYCN, and copy number gains in SMO and c-MET. Transcriptomic analysis identified increased expression of MYCN, and genes involved in sonic hedgehog signaling proteins (SHH, SMO, GLI1, GLI2) and receptor tyrosine kinase pathways (PLK, AURKA, c-MET). HTS revealed no cytotoxic efficacy of SHH pathway inhibitors while sensitivity was observed to the mTOR inhibitor temsirolimus, the ALK inhibitor ceritinib, and the PLK1 inhibitor BI2536. Based on the integrated approach, temsirolimus, ceritinib, BI2536 and standard therapy temozolomide were selected for further in vivo evaluation. Using the PDX animal model (median survival 28 days) we showed significant in vivo activity for mTOR inhibition by temsirolimus and BI2536 (median survival 109 and 115.5 days respectively) while ceritinib and temozolomide had only a moderate effect (43 and 75.5 days median survival respectively). This case study demonstrates that an integrated approach based on genomic, in vitro and in vivo drug efficacy testing in a PDX model may be useful to guide the management of high risk pediatric brain tumor in a clinically meaningful timeframe.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Genômica , Ensaios de Triagem em Larga Escala , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Fatores Etários , Animais , Biópsia , Criança , Metilação de DNA , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Genômica/métodos , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Neoplasias/diagnóstico , Neoplasias/mortalidade , Medicina de Precisão/métodos , Recidiva , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Oncotarget ; 9(7): 7541-7556, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29484131

RESUMO

Diffuse Intrinsic Pontine Gliomas (DIPG) are the most devastating of all pediatric brain tumors. They mostly affect young children and, as there are no effective treatments, almost all patients with DIPG will die of their tumor within 12 months of diagnosis. A key feature of this devastating tumor is its intrinsic resistance to all clinically available therapies. It has been shown that glioma development is associated with metabolic reprogramming, redox state disruption and resistance to apoptotic pathways. The mitochondrion is an attractive target as a key organelle that facilitates these critical processes. PENAO is a novel anti-cancer compound that targets mitochondrial function by inhibiting adenine nucleotide translocase (ANT). Here we found that DIPG neurosphere cultures express high levels of ANT2 protein and are sensitive to the mitochondrial inhibitor PENAO through oxidative stress, while its apoptotic effects were found to be further enhanced upon co-treatment with mTOR inhibitor temsirolimus. This combination therapy was found to act through inhibition of PI3K/AKT/mTOR pathway, HSP90 and activation of AMPK. In vivo experiments employing an orthotopic model of DIPG showed a marginal anti-tumour effect likely due to poor penetration of the inhibitors into the brain. Further testing of this anti-DIPG strategy with compounds that penetrate the BBB is warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA