RESUMO
We recorded directly from the orbital (oPFC) and ventromedial (vmPFC) subregions of the orbitofrontal cortex (OFC) in 22 (9 female, 13 male) epilepsy patients undergoing intracranial electroencephalography (iEEG) monitoring during an experimental task in which the participants judged the accuracy of self-referential autobiographical statements as well as valenced self-judgments (SJs). We found significantly increased high-frequency activity (HFA) in â¼13% of oPFC sites (10/18 subjects) and 16% of vmPFC sites (4/12 subjects) during both of these self-referential thought processes, with the HFA power being modulated by the content of self-referential stimuli. The location of these activated sites corresponded with the location of fMRI-identified limbic network. Furthermore, the onset of HFA in the vmPFC was significantly earlier than that in the oPFC in all patients with simultaneous recordings in both regions. In 11 patients with available depression scores from comprehensive neuropsychological assessments, we documented diminished HFA in the OFC during positive SJ trials among individuals with higher depression scores; responses during negative SJ trials were not related to the patients' depression scores. Our findings provide new temporal and anatomical information about the mode of engagement in two important subregions of the OFC during autobiographical memory and SJ conditions. Our findings from the OFC support the hypothesis that diminished brain activity during positive self-evaluations, rather than heightened activity during negative self-evaluations, plays a key role in the pathophysiology of depression.
Assuntos
Epilepsia , Memória Episódica , Humanos , Masculino , Feminino , Julgamento , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico , Imageamento por Ressonância MagnéticaRESUMO
Recent translational work has shown that fibromyalgia might be an autoimmune condition with pathogenic mechanisms mediated by a peripheral, pain-inducing action of immunoglobulin G (IgG) antibodies binding to satellite glia cells (SGC) in the dorsal root ganglia. A first clinical assessment of the postulated autoimmunity showed that fibromyalgia subjects (FMS) had elevated levels of antibodies against SGC (termed anti-SGC IgG) compared to healthy controls and that anti-SGC IgG were associated with a more severe disease status. The overarching aim of the current study was to determine whether the role of anti-SGC IgG in driving pain is exclusively through peripheral mechanisms, as indirectly shown so far, or could be attributed also to central mechanisms. To this end, we wanted to first confirm, in a larger cohort of FMS, the relation between anti-SGC IgG and pain-related clinical measures. Secondly, we explored the associations of these autoantibodies with brain metabolite concentrations (assessed via magnetic resonance spectroscopy, MRS) and pressure-evoked cerebral pain processing (assessed via functional magnetic resonance imaging, fMRI) in FMS. Proton MRS was performed in the thalamus and rostral anterior cingulate cortex (rACC) of FMS and concentrations of a wide spectrum of metabolites were assessed. During fMRI, FMS received individually calibrated painful pressure stimuli corresponding to low and high pain intensities. Our results confirmed a positive correlation between anti-SGC IgG and clinical measures assessing condition severity. Additionally, FMS with high anti-SGC IgG levels had higher pain intensity and a worse disease status than FMS with low anti-SGC IgG levels. Further, anti-SGC IgG levels negatively correlated with metabolites such as scyllo-inositol in thalamus and rACC as well as with total choline and macromolecule 12 in thalamus, thus linking anti-SGC IgG levels to the concentration of metabolites in the brain of FMS. However, anti-SGC IgG levels in FMS were not associated with the sensitivity to pressure pain or the cerebral processing of evoked pressure pain. Taken together, our results suggest that anti-SGC IgG might be clinically relevant for spontaneous, non-evoked pain. Our current and previous translational and clinical findings could provide a rationale to try new antibody-related treatments in FMS.
RESUMO
In vast areas of the world, forests and vegetation are water limited and plant survival depends on the ability to avoid catastrophic hydraulic failure. Therefore, it is remarkable that plants take hydraulic risks by operating at water potentials (ψ) that induce partial failure of the water conduits (xylem). Here we present an eco-evolutionary optimality principle for xylem conduit design that explains this phenomenon based on the hypothesis that conductive efficiency and safety are optimally co-adapted to the environment. The model explains the relationship between the tolerance to negative water potential (ψ50 ) and the environmentally dependent minimum ψ (ψmin ) across a large number of species, and along the xylem pathway within individuals of two species studied. The wider hydraulic safety margin in gymnosperms compared to angiosperms can be explained as an adaptation to a higher susceptibility to accumulation of embolism. The model provides a novel optimality-based perspective on the relationship between xylem safety and efficiency.
Assuntos
Secas , Xilema , Humanos , Árvores , Florestas , Água , Folhas de PlantaRESUMO
Dysfunctional top-down pain modulation is a hallmark of fibromyalgia (FM) and physical exercise is a cornerstone in FM treatment. The aim of this study was to explore the effects of a 15-week intervention of strengthening exercises, twice per week, supervised by a physiotherapist, on exercise-induced hypoalgesia (EIH) and cerebral pain processing in FM patients and healthy controls (HC). FM patients (n = 59) and HC (n = 39) who completed the exercise intervention as part of a multicenter study were examined at baseline and following the intervention. Following the exercise intervention, FM patients reported a reduction of pain intensity, fibromyalgia severity and depression. Reduced EIH was seen in FM patients compared to HC at baseline and no improvement of EIH was seen following the 15-week resistance exercise intervention in either group. Furthermore, a subsample (Stockholm site: FM n = 18; HC n = 19) was also examined with functional magnetic resonance imaging (fMRI) during subjectively calibrated thumbnail pressure pain stimulations at baseline and following intervention. A significant main effect of exercise (post > pre) was observed both in FM patients and HC, in pain-related brain activation within left dorsolateral prefrontal cortex and caudate, as well as increased functional connectivity between caudate and occipital lobe bordering cerebellum (driven by the FM patients). In conclusion, the results indicate that 15-week resistance exercise affect pain-related processing within the cortico-striatal-occipital networks (involved in motor control and cognition), rather than directly influencing top-down descending pain inhibition. In alignment with this, exercise-induced hypoalgesia remained unaltered.
RESUMO
Previous studies have shown that a re-organization of the brain's functional connectome expressed in terms of network integration and segregation may play a pivotal role for brain function. However, it has been proven difficult to fully capture both processes independently in a single methodological framework. In this study, by starting from pair-wise assessments of instantaneous phase synchronization and community membership, we assemble spatiotemporally flexible networks that reflect changes in integration/segregation that occur at a spectrum of spatial as well as temporal scales. This is achieved by iteratively assembling smaller networks into larger units under the constraint that the smaller units should be internally integrated, i.e. belong to the same community. The assembled subnetworks can be partly overlapping and differ in size across time. Our results show that subnetwork integration and segregation occur simultaneously in the brain. During task performance, global changes in synchronization between networks arise that are tied to the underlying temporal design of the experiment. We show that a hallmark property of the dynamics of the brain's functional connectome is a presence of quasi-periodic patterns of network activation and deactivation, which during task performance becomes intertwined with the underlying temporal structure of the experimental paradigm. Additionally, we show that the degree of network integration throughout a n-back working memory task is correlated to performance.
Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Mapeamento Encefálico , Conectoma/métodos , Análise e Desempenho de Tarefas , Descanso , Rede Nervosa/fisiologiaRESUMO
Recovery of dexterous hand use is critical for functional outcome after stroke. Grip force recordings can inform on maximal motor output and modulatory and inhibitory cerebral functions, but how these actually contribute to recovery of dexterous hand use is unclear. This cohort study used serially assessed measures of hand kinetics to test the hypothesis that behavioural measures of motor modulation and inhibition explain dexterity recovery beyond that explained by measures of motor output alone. We also investigated the structural and functional connectivity correlates of grip force control recovery. Eighty-nine adults (median age = 54 years, 26% females) with first-ever ischaemic or haemorrhagic stroke and persistent arm and hand paresis were assessed longitudinally, at 3 weeks, and at 3 and 6 months after stroke. Kinetic measures included: maximal grip force, accuracy of precision and power grip force control, and ability to release force abruptly. Dexterous hand use was assessed clinically with the Box and Block Test and motor impairment with the upper extremity Fugl-Meyer Assessment. Structural and functional MRI was used to assess weighted corticospinal tract lesion load, voxel-based lesion symptom mapping and interhemispheric resting-state functional connectivity. Fifty-three per cent of patients had severe initial motor impairment and a majority still had residual force control impairments at 6 months. Force release at 3 weeks explained 11% additional variance of Box and Block Test outcome at 6 months, above that explained by initial scores (67%). Other kinetic measures did not explain additional variance of recovery. The predictive value of force release remained significant when controlling for corticospinal tract lesion load and clinical measures. Corticospinal tract lesion load correlated with recovery in grip force control measures. Lesions involving the parietal operculum, insular cortex, putamen and fronto-striatal tracts were also related to poorer force modulation and release. Lesions to fronto-striatal tracts explained an additional 5% of variance in force release beyond the 43% explained by corticospinal injury alone. Interhemispheric functional connectivity did not relate to force control recovery. We conclude that not only voluntary force generation but also force release (reflecting motor inhibition) are important for recovery of dexterous hand use after stroke. Although corticospinal injury is a main determinant of recovery, lesions to integrative somatosensory areas and fronto-parietal white matter (involved in motor inhibition) explain additional variance in post-stroke force release recovery. Our findings indicate that post-stroke upper limb motor impairment profiling, which is essential for targeted treatment, should consider both voluntary grasp generation and inhibition.
RESUMO
Functional brain networks and the perception of pain can fluctuate over time. However, how the time-dependent reconfiguration of functional brain networks contributes to chronic pain remains largely unexplained. Here, we explored time-varying changes in brain network integration and segregation during pain over a disease-affected area (joint) compared to a neutral site (thumbnail) in 28 patients with rheumatoid arthritis (RA) in comparison with 22 healthy controls (HC). During functional magnetic resonance imaging, all subjects received individually calibrated pain pressures corresponding to visual analog scale 50 mm at joint and thumbnail. We implemented a novel approach to track changes of task-based network connectivity over time. Within this framework, we quantified measures of integration (participation coefficient, PC) and segregation (within-module degree z-score). Using these network measures at multiple spatial scales, both at the level of single nodes (brain regions) and communities (clusters of nodes), we found that PC at the community level was generally higher in RA patients compared to HC during and after painful pressure over the inflamed joint and corresponding site in HC. This shows that all brain communities integrate more in RA patients than in HC for time points following painful stimulation to a disease-relevant body site. However, the elevated community-related integration seen in patients appeared to not pertain uniquely to painful stimulation at the inflamed joint, but also at the neutral thumbnail, as integration and segregation at the community level did not differ across body sites in patients. Moreover, there was no specific nodal contribution to brain network integration or segregation. Altogether, our findings indicate widespread and persistent changes in network interaction in RA patients compared to HC in response to painful stimulation.
RESUMO
Individuals who engage in nonsuicidal self-injury (NSSI) have demonstrated insensitivity to pain compared with individuals without NSSI. Yet, the neural mechanisms behind this difference are unknown. The objective of the present study was to determine which aspects of the pain regulatory system that account for this decreased sensitivity to pain. In a case-control design, 81 women, aged 18-35 (mean [SD] age, 23.4 [3.9]), were included (41 with NSSI and 40 healthy controls). A quantitative sensory testing protocol, including heat pain thresholds, heat pain tolerance, pressure pain thresholds, conditioned pain modulation (assessing central down-regulation of pain), and temporal summation (assessing facilitation of pain signals) was used. Pain-evoked brain responses were assessed by means of fMRI scanning during thermal pain. NSSI participants showed a more effective central down-regulation of pain, compared to controls, assessed with conditioned pain modulation. The neural responses to painful stimulation revealed a stronger relation between nociceptive and pain modulatory brain regions in NSSI compared to controls. In line with previous studies, pressure and heat pain thresholds were higher in participants with NSSI, however, there were no correlations between pain outcomes and NSSI clinical characteristics. The augmented pain inhibition and higher involvement of pain modulatory brain networks in NSSI may represent a pain insensitive endophenotype associated with a greater risk for developing self-injurious behavior.
Assuntos
Comportamento Autodestrutivo , Humanos , Feminino , Adulto Jovem , Adulto , Dor , Encéfalo , Inibição Psicológica , Estudos de Casos e ControlesRESUMO
INTRODUCTION: Exposure to conditioned cues is a common trigger of relapse in addiction. It has been suggested that such cues can activate motivationally relevant neurocircuitry in individuals with substance use disorders even without being consciously perceived. We aimed to see if this could be replicated in a sample with severe amphetamine use disorder and a control group of healthy subjects. METHODS: We used fMRI to test the hypothesis that individuals with amphetamine use disorder, but not healthy controls, exhibit a specific neural reactivity to subliminally presented pictures related to amphetamine use. Twenty-four amphetamine users and 25 healthy controls were recruited and left data of sufficient quality to be included in the final analysis. All subjects were exposed to drug-related and neutral pictures of short duration (13.3 ms), followed by a backward visual mask image. The contrast of interest was drug versus neutral subliminal pictures. RESULTS: There were no statistically significant differences in BOLD signal between the drug and neutral cues, neither in the limbic regions of primary interest nor in exploratory whole-brain analyses. The same results were found both in amphetamine users and controls. DISCUSSION/CONCLUSION: We found no evidence of neural reactivity to subliminally presented drug cues in this sample of subjects with severe amphetamine dependence. These results are discussed in relation to the earlier literature, and the evidence for subliminal drug cue reactivity in substance use disorders is questioned.
Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Substâncias , Anfetaminas , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Sinais (Psicologia) , Humanos , Imageamento por Ressonância Magnética/métodosRESUMO
The present study aimed to determine changes in brain network integration/segregation during thermal pain using methods optimized for network connectivity events with high temporal resolution. Participants (n = 33) actively judged whether thermal stimuli applied to the volar forearm were painful or not and then rated the warmth/pain intensity after each trial. We show that the temporal evolution of integration/segregation within trials correlates with the subjective ratings of pain. Specifically, the brain shifts from a segregated state to an integrated state when processing painful stimuli. The association with subjective pain ratings occurred at different time points for all networks. However, the degree of association between ratings and integration/segregation vanished for several brain networks when time-varying functional connectivity was measured at lower temporal resolution. Moreover, the increased integration associated with pain is explained to some degree by relative increases in between-network connectivity. Our results highlight the importance of investigating the relationship between pain and brain network connectivity at a single time point scale, since commonly used temporal aggregations of connectivity data may result in that fine-scale changes in network connectivity may go unnoticed. The interplay between integration/segregation reflects shifting demands of information processing between brain networks and this adaptation occurs both for cognitive tasks and nociceptive processing.
Assuntos
Mapeamento Encefálico , Rede Nervosa , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , DorRESUMO
Nociceptive processing in the human brain is complex and involves several brain structures and varies across individuals. Determining the structures that contribute to interindividual differences in nociceptive processing is likely to improve our understanding of why some individuals feel more pain than others. Here, we found specific parts of the cerebral response to nociception that are under genetic influence by employing a classic twin-design. We found genetic influences on nociceptive processing in the midcingulate cortex and bilateral posterior insula. In addition to brain activations, we found genetic contributions to large-scale functional connectivity (FC) during nociceptive processing. We conclude that additive genetics influence specific brain regions involved in nociceptive processing. The genetic influence on FC during nociceptive processing is not limited to core nociceptive brain regions, such as the dorsal posterior insula and somatosensory areas, but also involves cognitive and affective brain circuitry. These findings improve our understanding of human pain perception and increases chances to find new treatments for clinical pain.
Assuntos
Mapeamento Encefálico , Nociceptividade , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Nociceptividade/fisiologia , Percepção da DorRESUMO
BACKGROUND: Bipolar disorder is highly heritable and polygenic. The polygenic risk for bipolar disorder overlaps with that of schizophrenia, and polygenic scores are normally distributed in the population. Bipolar disorder has been associated with structural brain abnormalities, but it is unknown how these are linked to genetic risk factors for psychotic disorders. METHODS: We tested whether polygenic risk scores for bipolar disorder and schizophrenia predict structural brain alterations in 98 patients with bipolar disorder and 81 healthy controls. We derived brain cortical thickness, surface area and volume from structural MRI scans. In post-hoc analyses, we correlated polygenic risk with functional hub strength, derived from resting-state functional MRI and brain connectomics. RESULTS: Higher polygenic risk scores for both bipolar disorder and schizophrenia were associated with a thinner ventromedial prefrontal cortex (vmPFC). We found these associations in the combined group, and separately in patients and drug-naive controls. Polygenic risk for bipolar disorder was correlated with the functional hub strength of the vmPFC within the default mode network. LIMITATIONS: Polygenic risk is a cumulative measure of genomic burden. Detailed genetic mechanisms underlying brain alterations and their cognitive consequences still need to be determined. CONCLUSION: Our multimodal neuroimaging study linked genomic burden and brain endophenotype by demonstrating an association between polygenic risk scores for bipolar disorder and schizophrenia and the structure and function of the vmPFC. Our findings suggest that genetic factors might confer risk for psychotic disorders by influencing the integrity of the vmPFC, a brain region involved in self-referential processes and emotional regulation. Our study may also provide an imaging-genetics vulnerability marker that can be used to help identify individuals at risk for developing bipolar disorder.
Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/genética , Envelhecimento/genética , Transtorno Bipolar/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Herança Multifatorial , Córtex Pré-Frontal/diagnóstico por imagem , Fatores de Risco , Esquizofrenia/diagnóstico por imagemRESUMO
Though the organization of functional brain networks is modular at its core, modularity does not capture the full range of dynamic interactions between individual brain areas nor at the level of subnetworks. In this paper we present a hierarchical model that represents both flexible and modular aspects of intrinsic brain organization across time by constructing spatiotemporally flexible subnetworks. We also demonstrate that segregation and integration are complementary and simultaneous events. The method is based on combining the instantaneous phase synchrony analysis (IPSA) framework with community detection to identify a small, yet representative set of subnetwork components at the finest level of spatial granularity. At the next level, subnetwork components are combined into spatiotemporally flexibly subnetworks where temporal lag in the recruitment of areas within subnetworks is captured. Since individual brain areas are permitted to be part of multiple interleaved subnetworks, both modularity as well as more flexible tendencies of connectivity are accommodated for in the model. Importantly, we show that assignment of subnetworks to the same community (integration) corresponds to positive phase coherence within and between subnetworks, while assignment to different communities (segregation) corresponds to negative phase coherence or orthogonality. Together with disintegration, i.e. the breakdown of internal coupling within subnetwork components, orthogonality facilitates reorganization between subnetworks. In addition, we show that the duration of periods of integration is a function of the coupling strength within subnetworks and subnetwork components which indicates an underlying metastable dynamical regime. Based on the main tendencies for either integration or segregation, subnetworks are further clustered into larger meta-networks that are shown to correspond to combinations of core resting-state networks. We also demonstrate that subnetworks and meta-networks are coarse graining strategies that captures the quasi-cyclic recurrence of global patterns of integration and segregation in the brain. Finally, the method allows us to estimate in broad terms the spectrum of flexible and/or modular tendencies for individual brain areas.
Assuntos
Encéfalo/anatomia & histologia , Conectoma , Rede Nervosa/anatomia & histologia , Circulação Cerebrovascular , Conjuntos de Dados como Assunto , Humanos , Modelos Neurológicos , Oxigênio/sangueRESUMO
Recent advances in non-linear computational and dynamical modelling have opened up the possibility to parametrize dynamic neural mechanisms that drive complex behavior. Importantly, building models of neuronal processes is of key importance to fully understand disorders of the brain as it may provide a quantitative platform that is capable of binding multiple neurophysiological processes to phenotype profiles. In this study, we apply a newly developed adaptive frequency-based model of whole-brain oscillations to resting-state fMRI data acquired from healthy controls and a cohort of attention deficit hyperactivity disorder (ADHD) subjects. As expected, we found that healthy control subjects differed from ADHD in terms of attractor dynamics. However, we also found a marked dichotomy in neural dynamics within the ADHD cohort. Next, we classified the ADHD group according to the level of distance of each individual's empirical network from the two model-based simulated networks. Critically, the model was mirrored in the empirical behavior data with the two ADHD subgroups displaying distinct behavioral phenotypes related to emotional instability (i.e., depression and hypomanic personality traits). Finally, we investigated the applicability and feasibility of our whole-brain model in a therapeutic setting by conducting in silico excitatory stimulations to parsimoniously mimic clinical neuro-stimulation paradigms in ADHD. We tested the effect of stimulating any individual brain region on the key network measures derived from the simulated brain network and its contribution in rectifying the brain dynamics to that of the healthy brain, separately for each ADHD subgroup. This showed that this was indeed possible for both subgroups. However, the current effect sizes were small suggesting that the stimulation protocol needs to be tailored at the individual level. These findings demonstrate the potential of this new modelling framework to unveil hidden neurophysiological profiles and establish tailored clinical interventions.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Redes Neurais de Computação , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/terapia , Encéfalo/fisiopatologia , Estudos de Coortes , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Adulto JovemRESUMO
For trees in forests, striving for light is matter of life and death, either by growing taller toward brighter conditions or by expanding the crown to capture more of the available light. Here, we present a mechanistic model for the development path of stem height and crown size, accounting for light capture and growth, as well as mortality risk. We determine the optimal growth path among all possible trajectories using dynamic programming. The optimal growth path follows a sequence of distinct phases: (i) initial crown size expansion, (ii) stem height growth toward the canopy, (iii) final expansion of the crown in the canopy and (iv) seed production without further increase in size. The transition points between these phases can be optimized by maximizing fitness, defined as expected lifetime reproductive production. The results imply that to reach the canopy in an optimal way, trees must consider the full profile of expected increasing light levels toward the canopy. A shortsighted maximization of growth based on initial light conditions can result in arrested height growth, preventing the tree from reaching the canopy. The previous result can explain canopy stratification, and why canopy species often get stuck at a certain size under a shading canopy. The model explains why trees with lower wood density have a larger diameter at a given tree height and grow taller than trees with higher wood density. The model can be used to implement plasticity in height versus diameter growth in individual-based vegetation and forestry models.
Assuntos
Agricultura Florestal , Árvores , FlorestasRESUMO
Congenital blindness is associated with atypical morphology and functional connectivity within and from visual cortical regions; changes that are hypothesized to originate from a lifelong absence of visual input and could be regarded as a general (re) organization principle of sensory cortices. Challenging this is the fact that individuals with congenital anosmia (lifelong olfactory sensory loss) display little to no morphological changes in the primary olfactory cortex. To determine whether olfactory input from birth is essential to establish and maintain normal functional connectivity in olfactory processing regions, akin to the visual system, we assessed differences in functional connectivity within the olfactory cortex between individuals with congenital anosmia (n = 33) and matched controls (n = 33). Specifically, we assessed differences in connectivity between core olfactory processing regions as well as differences in regional homogeneity and homotopic connectivity within the primary olfactory cortex. In contrast to congenital blindness, none of the analyses indicated atypical connectivity in individuals with congenital anosmia. In fact, post-hoc Bayesian analysis provided support for an absence of group differences. These results suggest that a lifelong absence of olfactory experience has a limited impact on the functional connectivity in the olfactory cortex, a finding that indicates a clear difference between sensory modalities in how sensory cortical regions develop.
Assuntos
Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Transtornos do Olfato/congênito , Córtex Olfatório/fisiologia , Córtex Olfatório/fisiopatologia , Olfato/fisiologia , Adulto , Teorema de Bayes , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Transtornos do Olfato/diagnóstico por imagem , Transtornos do Olfato/fisiopatologia , Córtex Olfatório/diagnóstico por imagemRESUMO
Hubs in brain network connectivity have previously been observed using neuroimaging techniques and are generally believed to be of pivotal importance to establish and maintain a functional platform on which cognitively meaningful and energy-efficient neuronal communication can occur. However, little is known if hubs are static (i.e. a brain region is always a hub) or if these properties change over time (i.e. brain regions fluctuate in their 'hubness'). To address this question, we introduce two new methodological concepts, the flow of brain connectivity and node penalized shortest paths which are then applied to time-varying functional connectivity fMRI BOLD data. We show that the constellations of active hubs change over time in a non-trivial way and that activity of hubs is dependent on the temporal scale of investigation. Slower fluctuations in the number of active hubs that exceeded the degree expected by chance alone were detected primarily in subcortical structures. Moreover, we observed faster fluctuations in hub activity residing predominately in the default mode network that suggests dynamic events in brain connectivity. Our results suggest that the temporal behavior of connectivity hubs is a multilayered and complex issue where method-specific properties of temporal sensitivity to time-varying connectivity must be taken into account. We discuss our results in relation to the on-going discussion of the existence of discrete and stable states in the resting-brain and the role of network hubs in providing a scaffold for neuronal communication across time.
Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Interpretação Estatística de Dados , Humanos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/fisiologia , Fatores de TempoRESUMO
Attention deficit hyperactivity disorder (ADHD) is characterized by high distractibility and impaired executive functions. Notably, there is mounting evidence suggesting that ADHD could be regarded as a default mode network (DMN) disorder. In particular, failure in regulating the dynamics of activity and interactions of the DMN and cognitive control networks have been hypothesized as the main source of task interference causing attentional problems. On the other hand, previous studies indicated pronounced fluctuations in the strength of functional connections over time, particularly for the inter-network connections between the DMN and fronto-parietal control networks. Hence, characterization of connectivity disturbances in ADHD requires a thorough assessment of time-varying functional connectivity (FC). In this study, we proposed a dynamical systems perspective to assess how the DMN over time recruits different configurations of network segregation and integration. Specifically, we were interested in configurations for which both intra- and inter-network connections are retained, as opposed to commonly used methods which assess network segregation as a single measure. From resting-state fMRI data, we extracted three different stable configurations of FC patterns for the DMN, namely synergies. We provided evidence supporting our hypothesis that ADHD differs compared to controls, both in terms of recruitment rate and topology of specific synergies between resting-state networks. In addition, we found a relationship between synergetic cooperation patterns of the DMN with cognitive control networks and a behavioral measure which is sensitive to ADHD-related symptoms, namely the Stroop color-word task.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Descanso/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Whole-brain computational modeling based on structural connectivity has shown great promise in successfully simulating fMRI BOLD signals with temporal coactivation patterns that are highly similar to empirical functional connectivity patterns during resting state. Importantly, previous studies have shown that spontaneous fluctuations in coactivation patterns of distributed brain regions have an inherent dynamic nature with regard to the frequency spectrum of intrinsic brain oscillations. In this modeling study, we introduced frequency dynamics into a system of coupled oscillators, where each oscillator represents the local mean-field model of a brain region. We first showed that the collective behavior of interacting oscillators reproduces previously shown features of brain dynamics. Second, we examined the effect of simulated lesions in gray matter by applying an in silico perturbation protocol to the brain model. We present a new approach to map the effects of vulnerability in brain networks and introduce a measure of regional hazardousness based on mapping of the degree of divergence in a feature space.