Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Clin Microbiol ; 62(2): e0083623, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38206000

RESUMO

HIV is an ongoing global epidemic with estimates of more than a million new infections occurring annually. To combat viral spread, continuous innovations in areas including testing and treatment are necessary. In the United States, the Centers for Disease Control and Prevention recommend that laboratories follow an HIV testing algorithm that first uses a US Food and Drug Administration approved immunoassay to detect antibodies to HIV-1 or HIV-2 as well as HIV-1 p24 antigen in serum or plasma samples. An initially reactive specimen is tested by a supplemental assay for confirmation and to differentiate antibodies to HIV-1 or HIV-2. There are few Food and Drug Administration (FDA)-approved supplemental differentiation tests currently available. A multicenter investigation was conducted to determine the clinical performance for two independent versions of the Avioq VioOne HIV Profile Supplemental Assay (Avioq, Inc., Research Triangle Park, NC). The performance of both assay versions compared favorably with the performance parameters for the Geenius HIV 1/2 Supplemental Assay as published in that assay package insert (Bio-Rad Laboratories, Hercules, CA), the current gold standard for HIV supplemental testing. When comparing the two VioOne assays, version 2 (lacking HIV-2 p27 antibody detection) demonstrated improved reproducibility, specificity, and sensitivity as compared to its predecessor. IMPORTANCE We evaluated the reproducibility, sensitivity, and specificity data for two versions of the VioOne HIV Profile Supplemental Assay and compared these results back to similar results for the Geenius HIV 1/2 Supplemental Assay that are publicly available. Our study concluded that the VioOne HIV Profile Supplemental Assay compared favorably with the Geenius HIV 1/2 Supplemental Assay, thus providing an additional option for clinical laboratories to improve and expand their HIV testing capabilities.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Estados Unidos , Reprodutibilidade dos Testes , Anticorpos Anti-HIV , Algoritmos , HIV-2 , Proteína do Núcleo p24 do HIV , Sensibilidade e Especificidade
2.
Pediatr Transplant ; 26(6): e14302, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35509112

RESUMO

BACKGROUND: HLA Ab analysis is carried out as a routine assay both pre- and post-heart transplantation to identify Abs directed against HLA with a focus post-transplant on those Abs that are donor-specific. While virtual crossmatching has decreased the requirement for prospective crossmatching in many cases, the management of highly sensitized children on the heart transplant waitlist remains challenging and can delay the ability to successfully identify a suitable organ. METHODS: This report describes the histocompatibility assessment and management of identical twin boys with familial restrictive cardiomyopathy serially listed for transplant. The boys presented with HLA Ab testing that demonstrated broad pan-DR reactivity which included Abs directed against SAgs. RESULTS: Our team began investigating the initial Ab results soon after listing the first child; the brother was listed 8 days later and had the same broad Ab profile. The clinical lab ran multiple investigative crossmatches using donor samples with known antigen typing and continued to see broad reactivity. We then partnered with an affiliated research lab where we identified high-level Abs directed against vimentin along with vimentin-positive exosomes in both boys. CONCLUSIONS: While Abs directed against the self-antigen vimentin has been described to cause false-positive tissue crossmatches, this is the first report of these Abs being associated with false-positive Ab screens using solid-phase assays. This finding informed our management and surveillance in these two vulnerable pediatric heart transplant candidates.


Assuntos
Antígenos HLA , Transplante de Coração , Anticorpos , Criança , Rejeição de Enxerto , Teste de Histocompatibilidade/métodos , Humanos , Isoanticorpos , Masculino , Estudos Prospectivos , Vimentina
3.
Hum Immunol ; 82(8): 574-580, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33934934

RESUMO

The flow cytometric crossmatch is currently the gold standard for evaluating donor and recipient histocompatibility. The assay however does have limitations and is sensitive to false positive reactions resulting from the presence of non-HLA antibodies or therapy related immune biologics. Such false positive reactions can lead to the inappropriate decline of an acceptable donor organ or unnecessary therapeutic intervention. Here we describe the successful validation of anti-idiotype blocking antibodies in prevention of false positive flow crossmatch results caused by biologic therapy. Blocking antibodies specific for the Fab portion of Rituximab and/or Alemtuzumab were incubated with biologic containing patient serum prior to use in flow cytometric crossmatching. Biologic blocking successfully negated false positive crossmatch results with Rituximab (B cell ave. % change = -97%) or Alemtuzumab (T cell ave. % change = -99%, B cell ave. % change = -95%) infused sera respectively. Simultaneous blocking of these biologics was also successful. A complex case is presented to demonstrate the application of this procedure.


Assuntos
Citometria de Fluxo/métodos , Antígenos HLA/genética , Antígenos HLA/imunologia , Teste de Histocompatibilidade/métodos , Histocompatibilidade/imunologia , Anticorpos Bloqueadores/sangue , Anticorpos Bloqueadores/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Produtos Biológicos , Relação Dose-Resposta Imunológica , Citometria de Fluxo/normas , Teste de Histocompatibilidade/normas , Humanos , Isoanticorpos/sangue , Isoanticorpos/imunologia , Testes de Neutralização , Doadores de Tecidos , Transplantados
4.
Front Microbiol ; 8: 1158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690600

RESUMO

The gram-negative bacterium Francisella tularensis (Ft) is both a potential biological weapon and a naturally occurring microbe that survives in arthropods, fresh water amoeba, and mammals with distinct phenotypes in various environments. Previously, we used a number of measurements to characterize Ft grown in Brain-Heart Infusion (BHI) broth as (1) more similar to infection-derived bacteria, and (2) slightly more virulent in naïve animals, compared to Ft grown in Mueller Hinton Broth (MHB). In these studies we observed that the free amino acids in MHB repress expression of select Ft virulence factors by an unknown mechanism. Here, we tested the hypotheses that Ft grown in BHI (BHI-Ft) accurately displays a full protein composition more similar to that reported for infection-derived Ft and that this similarity would make BHI-Ft more susceptible to pre-existing, vaccine-induced immunity than MHB-Ft. We performed comprehensive proteomic analysis of Ft grown in MHB, BHI, and BHI supplemented with casamino acids (BCA) and compared our findings to published "omics" data derived from Ft grown in vivo. Based on the abundance of ~1,000 proteins, the fingerprint of BHI-Ft is one of nutrient-deprived bacteria that-through induction of a stringent-starvation-like response-have induced the FevR regulon for expression of the bacterium's virulence factors, immuno-dominant antigens, and surface-carbohydrate synthases. To test the notion that increased abundance of dominant antigens expressed by BHI-Ft would render these bacteria more susceptible to pre-existing, vaccine-induced immunity, we employed a battery of LVS-vaccination and S4-challenge protocols using MHB- and BHI-grown Ft S4. Contrary to our hypothesis, these experiments reveal that LVS-immunization provides a barrier to infection that is significantly more effective against an MHB-S4 challenge than a BHI-S4 challenge. The differences in apparent virulence to immunized mice are profoundly greater than those observed with primary infection of naïve mice. Our findings suggest that tularemia vaccination studies should be critically evaluated in regard to the growth conditions of the challenge agent.

5.
Vaccine ; 34(29): 3396-404, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27182819

RESUMO

Francisella tularensis (Ft) is a Category A biothreat agent for which there currently is no FDA-approved vaccine. Thus, there is a substantial effort underway to develop an effective tularemia vaccine. While it is well established that gender can significantly impact susceptibility to primary infection, the impact of gender on vaccine efficacy is not well established. Thus, development of a successful vaccine against tularemia will require an understanding of the impact gender has on vaccine-induced protection against this organism. In this study, a role for gender in vaccine-induced protection following Ft challenge is identified for the first time. In the present study, mucosal vaccination with inactivated Ft (iFt) LVS elicited gender-based protection in C57BL/6Tac mice against respiratory challenge with Ft LVS. Specifically, vaccinated male mice were more susceptible to subsequent Ft LVS challenge. This increased susceptibility in male mice correlated with increased bacterial burden, increased tissue inflammation, and increased proinflammatory cytokine production late in post-challenge infection. In contrast, improved survival of iFt-vaccinated female mice correlated with reduced bacterial burden and enhanced levels of Ft-specific Abs in serum and broncho-alveolar lavage (BAL) fluid post-challenge. Furthermore, vaccination with a live attenuated vaccine consisting of an Ft LVS superoxide dismutase (SodB) mutant, which has proven efficacious against the highly virulent Ft SchuS4 strain, demonstrated similar gender bias in protection post-Ft SchuS4 challenge. Of particular significance is the fact that these are the first studies to demonstrate that gender differences impact disease outcome in the case of lethal respiratory tularemia following mucosal vaccination. In addition, these studies further emphasize the fact that gender differences must be a serious consideration in any future tularemia vaccine development studies.


Assuntos
Vacinas Bacterianas/imunologia , Fatores Sexuais , Administração através da Mucosa , Animais , Anticorpos Antibacterianos/sangue , Citocinas/imunologia , Feminino , Francisella tularensis , Imunidade Celular , Imunidade Humoral , Masculino , Camundongos Endogâmicos C57BL , Tularemia/prevenção & controle , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia
6.
Vaccine (Auckl) ; 6: 9-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200274

RESUMO

Francisella tularensis (Ft) is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved.

7.
Front Immunol ; 7: 677, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119692

RESUMO

Francisella tularensis (Ft) is a category A biothreat agent for which there is no Food and Drug Administration-approved vaccine. Ft can survive in a variety of habitats with a remarkable ability to adapt to changing environmental conditions. Furthermore, Ft expresses distinct sets of antigens (Ags) when inside of macrophages (its in vivo host) as compared to those grown in vitro with Mueller Hinton Broth (MHB). However, in contrast to MHB-grown Ft, Ft grown in Brain-Heart Infusion (BHI) more closely mimics the antigenic profile of macrophage-grown Ft. Thus, we anticipated that when used as a vaccine, BHI-grown Ft would provide better protection compared to MHB-grown Ft, primarily due to its greater antigenic similarity to Ft circulating inside the host (macrophages) during natural infection. Our investigation, however, revealed that inactivated Ft (iFt) grown in MHB (iFt-MHB) exhibited superior protective activity when used as a vaccine, as compared to iFt grown in BHI (iFt-BHI). The superior protection afforded by iFt-MHB compared to that of iFt-BHI was associated with significantly lower bacterial burden and inflammation in the lungs and spleens of vaccinated mice. Moreover, iFt-MHB also induced increased levels of Ft-specific IgG. Further evaluation of early immunological cues also revealed that iFt-MHB exhibits increased engagement of Ag-presenting cells including increased iFt binding to dendritic cells, increased expression of costimulatory markers, and increased secretion of pro-inflammatory cytokines. Importantly, these studies directly demonstrate that Ft growth conditions strongly impact Ft vaccine efficacy and that the growth medium used to produce whole cell vaccines to Ft must be a key consideration in the development of a tularemia vaccine.

8.
J Immunol Res ; 2015: 840842, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961064

RESUMO

Fc gamma receptor IIB (FcγRIIB) is the only Fc gamma receptor (FcγR) which negatively regulates the immune response, when engaged by antigen- (Ag-) antibody (Ab) complexes. Thus, the generation of Ag-specific IgG in response to infection or immunization has the potential to downmodulate immune protection against infection. Therefore, we sought to determine the impact of FcγRIIB on immune protection against Francisella tularensis (Ft), a Category A biothreat agent. We utilized inactivated Ft (iFt) as an immunogen. Naïve and iFt-immunized FcγRIIB knockout (KO) or wildtype (WT) mice were challenged with Ft-live vaccine strain (LVS). While no significant difference in survival between naïve FcγRIIB KO versus WT mice was observed, iFt-immunized FcγRIIB KO mice were significantly better protected than iFt-immunized WT mice. Ft-specific IgA in serum and bronchial alveolar lavage, as well as IFN-γ, IL-10, and TNF-α production by splenocytes harvested from iFt-immunized FcγRIIB KO, were also significantly elevated. In addition, iFt-immunized FcγRIIB KO mice exhibited a reduction in proinflammatory cytokine levels in vivo at 5 days after challenge, which correlates with increased survival following Ft-LVS challenge in published studies. Thus, these studies demonstrate for the first time the ability of FcγRIIB to regulate vaccine-induced IgA production and downmodulate immunity and protection. The immune mechanisms behind the above observations and their potential impact on vaccine development are discussed.


Assuntos
Anticorpos Antibacterianos/sangue , Francisella tularensis/imunologia , Imunoglobulina A/sangue , Receptores de IgG/genética , Receptores de IgG/imunologia , Transferência Adotiva , Animais , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-17/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/citologia , Tularemia/imunologia , Tularemia/microbiologia , Fator de Necrose Tumoral alfa/imunologia , Vacinação , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA