Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Neurosci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937583

RESUMO

Age-related myelin damage induces inflammatory responses, yet its involvement in Alzheimer's disease remains uncertain, despite age being a major risk factor. Using a mouse model of Alzheimer's disease, we found that amyloidosis itself triggers age-related oligodendrocyte and myelin damage. Mechanistically, CD8+ T cells promote the progressive accumulation of abnormally interferon-activated microglia that display myelin-damaging activity. Thus, our data suggest that immune responses against myelinating oligodendrocytes may contribute to neurodegenerative diseases with amyloidosis.

2.
Acta Neuropathol Commun ; 12(1): 70, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698465

RESUMO

The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.


Assuntos
COVID-19 , Microglia , Bulbo Olfatório , Humanos , COVID-19/patologia , COVID-19/complicações , Bulbo Olfatório/patologia , Bulbo Olfatório/metabolismo , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Microglia/patologia , Microglia/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , SARS-CoV-2 , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/metabolismo
3.
Nat Neurosci ; 27(3): 409-420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38366144

RESUMO

Neurological symptoms, including cognitive impairment and fatigue, can occur in both the acute infection phase of coronavirus disease 2019 (COVID-19) and at later stages, yet the mechanisms that contribute to this remain unclear. Here we profiled single-nucleus transcriptomes and proteomes of brainstem tissue from deceased individuals at various stages of COVID-19. We detected an inflammatory type I interferon response in acute COVID-19 cases, which resolves in the late disease phase. Integrating single-nucleus RNA sequencing and spatial transcriptomics, we could localize two patterns of reaction to severe systemic inflammation, one neuronal with a direct focus on cranial nerve nuclei and a separate diffuse pattern affecting the whole brainstem. The latter reflects a bystander effect of the respiratory infection that spreads throughout the vascular unit and alters the transcriptional state of mainly oligodendrocytes, microglia and astrocytes, while alterations of the brainstem nuclei could reflect the connection of the immune system and the central nervous system via, for example, the vagus nerve. Our results indicate that even without persistence of severe acute respiratory syndrome coronavirus 2 in the central nervous system, local immune reactions are prevailing, potentially causing functional disturbances that contribute to neurological complications of COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/genética , Proteômica , Tronco Encefálico , Cerebelo , Perfilação da Expressão Gênica
4.
Neurology ; 102(3): e207966, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38165297

RESUMO

BACKGROUND AND OBJECTIVES: A subgroup of patients with multiple sclerosis (MS) presents focal paramagnetic rims at the border between cortex and white matter (juxtacortical paramagnetic rims [JPRs]). We investigated the presence of this finding in our in vivo MS cohort and explored its potential clinical relevance. Moreover, we exploited postmortem MRI of fixed whole MS brains to (1) detect those rims and (2) investigate their histologic correlation. METHODS: Quantitative susceptibility mapping (QSM) and magnetization-prepared 2 rapid acquisition gradient-echo (MP2RAGE) images at 3T-MRI of 165 patients with MS from the in vivo cohort were screened for JPRs and the presence of cortical lesions. Five postmortem brains from patients with MS were imaged with 3T-MRI to obtain QSM and MP2RAGE sequences. Tissue blocks containing JPRs were excised and paraffin-embedded slices stained by immunohistochemistry for myelin basic protein (for myelin) and anti-CR3/43 (for major histocompatibility complex II-positive microglia/macrophages). DAB-Turnbull stain was performed to detect iron. RESULTS: JPRs are present in approximately 10% of in vivo patients and are associated with increased cortical lesion load. One of the 5 postmortem brains showed JPRs. Histologically, JPRs correspond to an accumulation of activated iron-laden phagocytes and are associated with demyelination of the whole overlying cortical ribbon. DISCUSSION: JPRs are a novel potential MRI biomarker of focal cortical demyelination, which seems related to global cortical pathology and might be useful for diagnostic and stratification purposes in a clinical setting.


Assuntos
Relevância Clínica , Esclerose Múltipla , Humanos , Prevalência , Esclerose Múltipla/diagnóstico por imagem , Autopsia , Ferro
5.
Neuropathol Appl Neurobiol ; 49(5): e12935, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37705188

RESUMO

AIMS: Fibroblast growth factor (FGF) signalling is dysregulated in multiple sclerosis (MS) and other neurological and psychiatric conditions, but there is little or no consensus as to how individual FGF family members contribute to disease pathogenesis. Lesion development in MS is associated with increased expression of FGF1, FGF2 and FGF9, all of which modulate remyelination in a variety of experimental settings. However, FGF9 is also selectively upregulated in major depressive disorder (MDD), prompting us to speculate it may also have a direct effect on neuronal function and survival. METHODS: Transcriptional profiling of myelinating cultures treated with FGF1, FGF2 or FGF9 was performed, and the effects of FGF9 on cortical neurons investigated using a combination of transcriptional, electrophysiological and immunofluorescence microscopic techniques. The in vivo effects of FGF9 were explored by stereotactic injection of adeno-associated viral (AAV) vectors encoding either FGF9 or EGFP into the rat motor cortex. RESULTS: Transcriptional profiling of myelinating cultures after FGF9 treatment revealed a distinct neuronal response with a pronounced downregulation of gene networks associated with axonal transport and synaptic function. In cortical neuronal cultures, FGF9 also rapidly downregulated expression of genes associated with synaptic function. This was associated with a complete block in the development of photo-inducible spiking activity, as demonstrated using multi-electrode recordings of channel rhodopsin-transfected rat cortical neurons in vitro and, ultimately, neuronal cell death. Overexpression of FGF9 in vivo resulted in rapid loss of neurons and subsequent development of chronic grey matter lesions with neuroaxonal reduction and ensuing myelin loss. CONCLUSIONS: These observations identify overexpression of FGF9 as a mechanism by which neuroaxonal pathology could develop independently of immune-mediated demyelination in MS. We suggest targeting neuronal FGF9-dependent pathways may provide a novel strategy to slow if not halt neuroaxonal atrophy and loss in MS, MDD and potentially other neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Esclerose Múltipla , Animais , Ratos , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , Fator 9 de Crescimento de Fibroblastos
6.
Neuroscience ; 520: 18-38, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061161

RESUMO

We investigate structural properties of neurons in the granular layer of human cerebellum with respect to their involvement in multiple sclerosis (MS). To this end we analyze data recorded by X-ray phase contrast tomography from tissue samples collected post mortem from a MS and a healthy control group. Using automated segmentation and histogram analysis based on optimal transport theory (OT) we find that the distributions representing nuclear structure in the granular layer move to a more compact nuclear state, i.e. smaller, denser and more heterogeneous nuclei in MS. We have previously made a similar observation for neurons of the dentate gyrus in Alzheimer's disease, suggesting that more compact structure of neuronal nuclei which we attributed to increased levels of heterochromatin, may possibly represent a more general phenomenon of cellular senescence associated with neurodegeneration.


Assuntos
Doença de Alzheimer , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Neurônios/fisiologia , Cerebelo , Senescência Celular , Doença de Alzheimer/patologia
8.
Brain Pathol ; 33(6): e13136, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36480267

RESUMO

Quantitative MRI (qMRI) probes the microstructural properties of the central nervous system (CNS) by providing biophysical measures of tissue characteristics. In this work, we aimed to (i) identify qMRI measures that distinguish histological lesion types in postmortem multiple sclerosis (MS) brains, especially the remyelinated ones; and to (ii) investigate the relationship between those measures and quantitative histological markers of myelin, axons, and astrocytes in the same experimental setting. Three fixed MS whole brains were imaged with qMRI at 3T to obtain magnetization transfer ratio (MTR), myelin water fraction (MWF), quantitative T1 (qT1), quantitative susceptibility mapping (QSM), fractional anisotropy (FA) and radial diffusivity (RD) maps. The identification of lesion types (active, inactive, chronic active, or remyelinated) and quantification of tissue components were performed using histological staining methods as well as immunohistochemistry and immunofluorescence. Pairwise logistic and LASSO regression models were used to identify the best qMRI discriminators of lesion types. The association between qMRI and quantitative histological measures was performed using Spearman's correlations and linear mixed-effect models. We identified a total of 65 lesions. MTR and MWF best predicted the chance of a lesion to be remyelinated, whereas RD and QSM were useful in the discrimination of active lesions. The measurement of microstructural properties through qMRI did not show any difference between chronic active and inactive lesions. MWF and RD were associated with myelin content in both lesions and normal-appearing white matter (NAWM), FA was the measure most associated with axon content in both locations, while MWF was associated with astrocyte immunoreactivity only in lesions. Moreover, we provided evidence of extensive astrogliosis in remyelinated lesions. Our study provides new information on the discriminative power of qMRI in differentiating MS lesions -especially remyelinated ones- as well as on the relative association between multiple qMRI measures and myelin, axon and astrocytes.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Bainha de Mielina/patologia
9.
Parkinsonism Relat Disord ; 101: 62-65, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803091

RESUMO

We report on the initial 17 (11 male:6 female) brain autopsies from across Europe and the United States in the Parkinson's Progression Markers Initiative (PPMI). Clinical diagnoses were Parkinson's disease (n = 15), multiple system atrophy (n = 1), and Dementia with Lewy bodies (n = 1); average age of death = 72 ± 8 yr. Cognitive assessment at last evaluation was 5 with normal cognition, 7 with mild cognitive impairment, and 5 with dementia. Genetic assessment showed 4 participants were heterozygous or homozygous for GBA N370S and 3 were heterozygous carriers for LRRK2 R1441G or G2019S; 1 was an APOE ε2 carrier and 5 were APOE ε4 carriers. Longitudinal DAT neuroimaging as well as CSF and plasma biomarker data are summarized. Neuropathologic examination confirmed all clinical diagnoses and showed the expected frequencies of common comorbidities; no evidence of chronic traumatic encephalopathy was observed. Thus, brain autopsy data can provide confirmation, clarification, and new insights into the PD progression observed during life. As it grows, the PPMI brain autopsy program will provide a deeply-annotated research resource to the community of investigators focused on developing biomarkers for PD progression.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Autopsia , Biomarcadores , Encéfalo/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Masculino , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética
10.
Nat Neurosci ; 25(7): 887-899, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35773544

RESUMO

The meninges, comprising the leptomeninges (pia and arachnoid layers) and the pachymeninx (dura layer), participate in central nervous system (CNS) autoimmunity, but their relative contributions remain unclear. Here we report on findings in animal models of CNS autoimmunity and in patients with multiple sclerosis, where, in acute and chronic disease, the leptomeninges were highly inflamed and showed structural changes, while the dura mater was only marginally affected. Although dural vessels were leakier than leptomeningeal vessels, effector T cells adhered more weakly to the dural endothelium. Furthermore, local antigen-presenting cells presented myelin and neuronal autoantigens less efficiently, and the activation of autoreactive T cells was lower in dural than leptomeningeal layers, preventing local inflammatory processes. Direct antigen application was required to evoke a local inflammatory response in the dura. Together, our data demonstrate an uneven involvement of the meningeal layers in CNS autoimmunity, in which effector T cell trafficking and activation are functionally confined to the leptomeninges, while the dura remains largely excluded from CNS autoimmune processes.


Assuntos
Autoimunidade , Meninges , Esclerose Múltipla , Animais , Aracnoide-Máter , Sistema Nervoso Central , Dura-Máter , Humanos , Meninges/fisiologia
11.
Ann Neurol ; 92(3): 486-502, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35713309

RESUMO

OBJECTIVES: Neuropathological studies have shown that multiple sclerosis (MS) lesions are heterogeneous in terms of myelin/axon damage and repair as well as iron content. However, it remains a challenge to identify specific chronic lesion types, especially remyelinated lesions, in vivo in patients with MS. METHODS: We performed 3 studies: (1) a cross-sectional study in a prospective cohort of 115 patients with MS and 76 healthy controls, who underwent 3 T magnetic resonance imaging (MRI) for quantitative susceptibility mapping (QSM), myelin water fraction (MWF), and neurite density index (NDI) maps. White matter (WM) lesions in QSM were classified into 5 QSM lesion types (iso-intense, hypo-intense, hyperintense, lesions with hypo-intense rims, and lesions with paramagnetic rim legions [PRLs]); (2) a longitudinal study of 40 patients with MS to study the evolution of lesions over 2 years; (3) a postmortem histopathology-QSM validation study in 3 brains of patients with MS to assess the accuracy of QSM classification to identify neuropathological lesion types in 63 WM lesions. RESULTS: At baseline, hypo- and isointense lesions showed higher mean MWF and NDI values compared to other QSM lesion types (p < 0.0001). Further, at 2-year follow-up, hypo-/iso-intense lesions showed an increase in MWF. Postmortem analyses revealed that QSM highly accurately identifies (1) fully remyelinated areas as hypo-/iso-intense (sensitivity = 88.89% and specificity = 100%), (2) chronic inactive lesions as hyperintense (sensitivity = 71.43% and specificity = 92.00%), and (3) chronic active/smoldering lesions as PRLs (sensitivity = 92.86% and specificity = 86.36%). INTERPRETATION: These results provide the first evidence that it is possible to distinguish chronic MS lesions in a clinical setting, hereby supporting with new biomarkers to develop and assess remyelinating treatments. ANN NEUROL 2022;92:486-502.


Assuntos
Esclerose Múltipla , Biomarcadores , Encéfalo/patologia , Estudos Transversais , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Prospectivos , Água
12.
Nat Commun ; 12(1): 6530, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764281

RESUMO

Infantile-onset RNaseT2 deficient leukoencephalopathy is characterised by cystic brain lesions, multifocal white matter alterations, cerebral atrophy, and severe psychomotor impairment. The phenotype is similar to congenital cytomegalovirus brain infection and overlaps with type I interferonopathies, suggesting a role for innate immunity in its pathophysiology. To date, pathophysiological studies have been hindered by the lack of mouse models recapitulating the neuroinflammatory encephalopathy found in patients. In this study, we generated Rnaset2-/- mice using CRISPR/Cas9-mediated genome editing. Rnaset2-/- mice demonstrate upregulation of interferon-stimulated genes and concurrent IFNAR1-dependent neuroinflammation, with infiltration of CD8+ effector memory T cells and inflammatory monocytes into the grey and white matter. Single nuclei RNA sequencing reveals homeostatic dysfunctions in glial cells and neurons and provide important insights into the mechanisms of hippocampal-accentuated brain atrophy and cognitive impairment. The Rnaset2-/- mice may allow the study of CNS damage associated with RNaseT2 deficiency and may be used for the investigation of potential therapies.


Assuntos
Endorribonucleases/metabolismo , Leucoencefalopatias/metabolismo , Leucoencefalopatias/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Endorribonucleases/genética , Feminino , Citometria de Fluxo , Genótipo , Humanos , Imuno-Histoquímica , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Masculino , Células T de Memória/metabolismo , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819378

RESUMO

We have studied the three-dimensional (3D) cytoarchitecture of the human hippocampus in neuropathologically healthy and Alzheimer's disease (AD) individuals, based on phase-contrast X-ray computed tomography of postmortem human tissue punch biopsies. In view of recent findings suggesting a nuclear origin of AD, we target in particular the nuclear structure of the dentate gyrus (DG) granule cells. Tissue samples of 20 individuals were scanned and evaluated using a highly automated approach of measurement and analysis, combining multiscale recordings, optimized phase retrieval, segmentation by machine learning, representation of structural properties in a feature space, and classification based on the theory of optimal transport. Accordingly, we find that the prototypical transformation between a structure representing healthy granule cells and the pathological state involves a decrease in the volume of granule cell nuclei, as well as an increase in the electron density and its spatial heterogeneity. The latter can be explained by a higher ratio of heterochromatin to euchromatin. Similarly, many other structural properties can be derived from the data, reflecting both the natural polydispersity of the hippocampal cytoarchitecture between different individuals in the physiological context and the structural effects associated with AD pathology.


Assuntos
Mapeamento Encefálico/métodos , Hipocampo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/métodos , Núcleo Celular/metabolismo , Meios de Contraste , Giro Denteado/diagnóstico por imagem , Eucromatina/química , Substância Cinzenta/diagnóstico por imagem , Heterocromatina/química , Humanos , Aprendizado de Máquina , Distribuição Normal , Reconhecimento Automatizado de Padrão , Análise de Componente Principal , Reprodutibilidade dos Testes , Substância Branca/diagnóstico por imagem
14.
Nat Neurosci ; 24(11): 1522-1533, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675436

RESUMO

Coronavirus disease 2019 (COVID-19) can damage cerebral small vessels and cause neurological symptoms. Here we describe structural changes in cerebral small vessels of patients with COVID-19 and elucidate potential mechanisms underlying the vascular pathology. In brains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals and animal models, we found an increased number of empty basement membrane tubes, so-called string vessels representing remnants of lost capillaries. We obtained evidence that brain endothelial cells are infected and that the main protease of SARS-CoV-2 (Mpro) cleaves NEMO, the essential modulator of nuclear factor-κB. By ablating NEMO, Mpro induces the death of human brain endothelial cells and the occurrence of string vessels in mice. Deletion of receptor-interacting protein kinase (RIPK) 3, a mediator of regulated cell death, blocks the vessel rarefaction and disruption of the blood-brain barrier due to NEMO ablation. Importantly, a pharmacological inhibitor of RIPK signaling prevented the Mpro-induced microvascular pathology. Our data suggest RIPK as a potential therapeutic target to treat the neuropathology of COVID-19.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Proteases 3C de Coronavírus/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microvasos/metabolismo , SARS-CoV-2/metabolismo , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Chlorocebus aethiops , Proteases 3C de Coronavírus/genética , Cricetinae , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microvasos/patologia , SARS-CoV-2/genética , Células Vero
15.
PLoS One ; 16(10): e0257372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34618817

RESUMO

AIM: Several pathophysiological processes are involved in Parkinson's disease (PD) and could inform in vivo biomarkers. We assessed an established biomarker panel, validated in Alzheimer's Disease, in a PD cohort. METHODS: Longitudinal cerebrospinal fluid (CSF) samples from PPMI (252 PD, 115 healthy controls, HC) were analyzed at six timepoints (baseline, 6, 12, 24, 36, and 48 months follow-up) using Elecsys® electrochemiluminescence immunoassays to quantify neurofilament light chain (NfL), soluble TREM2 receptor (sTREM2), chitinase-3-like protein 1 (YKL40), glial fibrillary acidic protein (GFAP), interleukin-6 (IL-6), S100, and total α-synuclein (αSyn). RESULTS: αSyn was significantly lower in PD (mean 103 pg/ml vs. HC: 127 pg/ml, p<0.01; area under the curve [AUC]: 0.64), while all other biomarkers were not significantly different (AUC NfL: 0.49, sTREM2: 0.54, YKL40: 0.57, GFAP: 0.55, IL-6: 0.53, S100: 0.54, p>0.05) and none showed a significant difference longitudinally. We found significantly higher levels of all these markers between PD patients who developed cognitive decline during follow-up, except for αSyn and IL-6. CONCLUSION: Except for αSyn, the additional biomarkers did not differentiate PD and HC, and none showed longitudinal differences, but most markers predict cognitive decline in PD during follow-up.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Neuroglia/patologia , Doença de Parkinson/líquido cefalorraquidiano , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/patologia , alfa-Sinucleína/líquido cefalorraquidiano
16.
Glia ; 69(10): 2362-2377, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34137074

RESUMO

Cerebral disease manifestation occurs in about two thirds of males with X-linked adrenoleukodystrophy (CALD) and is fatally progressive if left untreated. Early histopathologic studies categorized CALD as an inflammatory demyelinating disease, which led to repeated comparisons to multiple sclerosis (MS). The aim of this study was to revisit the relationship between axonal damage and myelin loss in CALD. We applied novel immunohistochemical tools to investigate axonal damage, myelin loss and myelin repair in autopsy brain tissue of eight CALD and 25 MS patients. We found extensive and severe acute axonal damage in CALD already in prelesional areas defined by microglia loss and relative myelin preservation. In contrast to MS, we did not observe selective phagocytosis of myelin, but a concomitant decay of the entire axon-myelin unit in all CALD lesion stages. Using a novel marker protein for actively remyelinating oligodendrocytes, breast carcinoma-amplified sequence (BCAS) 1, we show that repair pathways are activated in oligodendrocytes in CALD. Regenerating cells, however, were affected by the ongoing disease process. We provide evidence that-in contrast to MS-selective myelin phagocytosis is not characteristic of CALD. On the contrary, our data indicate that acute axonal injury and permanent axonal loss are thus far underestimated features of the disease that must come into focus in our search for biomarkers and novel therapeutic approaches.


Assuntos
Adrenoleucodistrofia , Esclerose Múltipla , Adrenoleucodistrofia/metabolismo , Axônios/metabolismo , Humanos , Masculino , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo
17.
Front Med (Lausanne) ; 8: 644715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113632

RESUMO

Background: Acute kidney injury (AKI) is very common in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) disease 2019 (COVID-19) and considered as a risk factor for COVID-19 severity. SARS-CoV-2 renal tropism has been observed in COVID-19 patients, suggesting that direct viral injury of the kidneys may contribute to AKI. We examined 20 adult cases with confirmed SARS-CoV-2 infection requiring ICU supportive care in a single-center prospective observational study and investigated whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Objectives: The objective of the study was to evaluate whether urinary markers for viral infection (SARS-CoV-2 N) and shedded cellular membrane proteins (ACE2, TMPRSS2) allow identification of patients at risk for AKI and outcome of COVID-19. Results: Urinary SARS-CoV-2 N measured at ICU admission identified patients at risk for AKI in COVID-19 (HR 5.9, 95% CI 1.4-26, p = 0.0095). In addition, the combination of urinary SARS-CoV-2 N and plasma albumin measurements further improved the association with AKI (HR 11.4, 95% CI 2.7-48, p = 0.0016). Finally, combining urinary SARS-CoV-2 N and plasma albumin measurements associated with the length of ICU supportive care (HR 3.3, 95% CI 1.1-9.9, p = 0.0273) and premature death (HR 7.6, 95% CI 1.3-44, p = 0.0240). In contrast, urinary ACE2 and TMPRSS2 did not correlate with AKI in COVID-19. Conclusions: In conclusion, urinary SARS-CoV-2 N levels associate with risk for AKI and correlate with COVID-19 severity.

18.
Front Neurol ; 12: 561158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613428

RESUMO

Fingolimod represents a highly effective disease-modifying drug in patients with active relapsing-remitting multiple sclerosis (RRMS). Its immunosuppressive effects can mediate adverse events like increased risk of cancer development or appearance of opportunistic infections. Progressive multifocal leukoencephalopathy (PML)-representing a severe opportunistic infection-has been only infrequently described during Fingolimod treatment. Here, we present a case of a 63-year-old women with pre-diagnosed RRMS who presented with new multiple cerebral lesions in a routine MRI scan, also including a tumefactive lesion in the left parietal lobe, eventually leading to the diagnosis of brain metastases derived by an adenocarcinoma of the lung. Additionally, a JCV-DNA-PCR in the cerebrospinal fluid revealed positive results, corresponding to a paraclinical progressive multifocal leukoencephalopathy. In conclusion, adverse events potentially associated with immunosuppression can occur during Fingolimod treatment. In this context, the occurrence of cancer and opportunistic infections should be carefully monitored. Here, we report a case in which JCV-DNA-PCR in the cerebrospinal fluid suggests asymptomatic PML and simultaneously lung cancer brain metastases developed. While it is rather unlikely that either event occurred as an adverse event of fingolimod treatment, a contributing effect cannot be formally excluded.

19.
Nat Neurosci ; 24(2): 168-175, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33257876

RESUMO

The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.


Assuntos
Encéfalo/virologia , COVID-19/virologia , Mucosa Olfatória/virologia , SARS-CoV-2/patogenicidade , Sistema Nervoso Central , Humanos , RNA Viral/genética , Olfato/fisiologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA