Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Pharmaceutics ; 16(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543281

RESUMO

We describe the development and validation of a HPLC-MS/MS method to assess the pharmacokinetics and tumor distribution of fenretinide, a synthetic retinoid chemically related to all-trans-retinoic acid, after administration of a novel oral nanoformulation of fenretinide, called bionanofenretinide (BNF). BNF was developed to overcome the major limitation of fenretinide: its poor aqueous solubility and bioavailability due to its hydrophobic nature. The method proved to be reproducible, precise and highly accurate for the measurement of the drug and the main metabolites. The lower limit of quantification resulted in 1 ng/mL. The curve range of 1-500 ng/mL and 50-2000 ng/mL, for plasma and tumor homogenate, respectively, was appropriate for the analysis, as demonstrated by the accuracy of between 96.8% and 102.4% for plasma and 96.6 to 102.3% for the tumor. The interdays precision and accuracy determined on quality controls at three different levels were in the ranges of 6.9 to 7.5% and 99.3 to 101.0%, and 0.96 to 1.91% and 102.3 to 105.8% for plasma and tumor, respectively. With the application of the novel assay in explorative pharmacokinetic studies, following acute and chronic oral administration of the nanoformulation, fenretinide was detected in plasma and tumor tissue at a concentration higher than the IC50 value necessary for in vitro inhibitory activity (i.e., 1-5 µM) in different cancer cells lines. We were also able to detect the presence in plasma and tumor of active and inactive metabolites of fenretinide.

2.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138547

RESUMO

We describe the development and validation of an HPLC-MS/MS method to assess the pharmacokinetics and tumour distribution of ZST316, an arginine analogue with inhibitory activity towards dimethylarginine dimethylaminohydrolase 1 (DDAH1) and vasculogenic mimicry, and its active metabolite L-257 in a xenograft model of triple-negative breast cancer (TNBC). The method proved to be reproducible, precise, and highly accurate for the measurement of both compounds in plasma and tumour tissue following acute and chronic (five days) intraperitoneal administration of ZST316 (30 mg/Kg daily) in six-week-old severe combined immunodeficiency disease (SCID) mice inoculated with MDA-MB-231 TNBC cells. ZST316 was detected in tumour tissue and plasma after 1 h (6.47 and 9.01 µM, respectively) and 24 h (0.13 and 0.16 µM, respectively) following acute administration, without accumulation during chronic treatment. Similarly, the metabolite L-257 was found in tumour tissue and plasma after 1 h (15.06 and 8.72 µM, respectively) and 24 h (0.17 and 0.17 µM, respectively) following acute administration of ZST316, without accumulation during chronic treatment. The half-life after acute and chronic treatment ranged between 4.4-7.1 h (plasma) and 4.5-5.0 h (tumour) for ZST316, and 4.2-5.3 h (plasma) and 3.6-4.9 h (tumour) for L-257. The results of our study demonstrate the (a) capacity to accurately measure ZST316 and L-257 concentrations in plasma and tumour tissue in mice using the newly developed HPLC-MS/MS method, (b) rapid conversion of ZST316 into L-257, (c) good intra-tumour penetration of both compounds, and (d) lack of accumulation of both ZST316 and L-257 in plasma and tumour tissue during chronic administration. Compared to a previous method developed by our group to investigate ZST316 in plasma, the main advantages of the new method include a wider range of linearity which reduces the need for dilutions and the combined assessment of ZST316 and L-257 in plasma and tumour tissue which limits the required amount of matrix. The new HPLC-MS/MS method is useful to investigate the in vivo effects of ZST316 and L-257 on vasculogenic mimicry, tumour mass, and metastatic burden in xenograft models of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Espectrometria de Massas em Tandem , Xenoenxertos , Espectrometria de Massa com Cromatografia Líquida
3.
Oncoimmunology ; 12(1): 2239035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538353

RESUMO

Chemotherapy is the standard of care for most malignancies. Its tumor debulking effect in adjuvant or neoadjuvant settings is unquestionable, although secondary effects have been reported that paradoxically promote metastasis. Chemotherapy affects the hematopoietic precursors leading to myelosuppression, with neutropenia being the main hematological toxicity induced by cytotoxic therapy. We used renal and lung murine tumor models metastatic to the lung to study chemotherapy-induced neutropenia (CIN) in the metastatic process. Cyclophosphamide and doxorubicin, two myelosuppressive drugs, but not cisplatin, increased the burden of artificial metastases to the lung, by reducing neutrophils. This effect was recapitulated by treatment with anti-Ly6G, the selective antibody-mediated neutrophil depletion that unleashed the formation of lung metastases in both artificial and spontaneous metastasis settings. The increased cancer dissemination was reversed by granulocyte-colony stimulating factor-mediated boosting of neutrophils in combination with chemotherapy. CIN affected the early metastatic colonization of the lung, quite likely promoting the proliferation of tumor cells extravasated into the lung at 24-72 hours. CIN did not affect the late events of the metastatic process, with established metastasis to the lung, nor was there any effect on the release of cancer cells from the primary, whose growth was, in fact, somewhat inhibited. This work suggests a role of neutrophils associated to a common cancer treatment side effect and claims a deep dive into the relationship between chemotherapy-induced neutropenia and metastasis.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neutropenia , Camundongos , Animais , Neutropenia/induzido quimicamente , Neutropenia/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/efeitos adversos , Proliferação de Células
4.
Adv Healthc Mater ; 12(17): e2202932, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36908188

RESUMO

Platinum-based chemotherapy is the first-line treatment for different cancer types, and in particular, for malignant pleural mesothelioma patients (a tumor histotype with urgent medical needs). Herein, a strategy is presented to stabilize, transport, and intracellularly release a platinumIV (PtIV ) prodrug using a breakable nanocarrier. Its reduction, and therefore activation as an anticancer drug, is promoted by the presence of glutathione in neoplastic cells that also causes the destruction of the carrier. The nanocage presents a single internal cavity in which the hydrophobic complex (Pt(dach)Cl2 (OH)2 ), (dach = R,R-diaminocyclohexane) is encapsulated. The in vitro uptake and the internalization kinetics in cancer model cells are evaluated and, using flow cytometry analysis, the successful release and activation of the Pt-based drug inside cancer cells are demonstrated. The in vitro findings are confirmed by the in vivo experiments on a mice model obtained by xenografting MPM487, a patient-derived malignant pleural mesothelioma. MPM487 confirms the well-known resistance of malignant pleural mesothelioma to cisplatin treatment while an interesting 50% reduction of tumor growth is observed when mice are treated with the PtIV , entrapped in the nanocages, at an equivalent dose of the platinum complex.


Assuntos
Antineoplásicos , Mesotelioma Maligno , Neoplasias , Animais , Camundongos , Compostos Organoplatínicos/química , Antineoplásicos/farmacologia , Antineoplásicos/química
6.
Pharmaceutics ; 14(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36297506

RESUMO

Nifuroxazide (NAZ), a nitrofuran derivative used to treat diarrhea, has been recently shown to possess anticancer activity. However, its pharmacokinetic profile is poorly known. The pharmacokinetic profile of NAZ was thus investigated in mice using a newly developed method based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). We determined the concentrations of NAZ in the plasma and brain tissue of mice treated with the drug. The method proved to be specific, reproducible, precise, and accurate. It also demonstrated high sensitivity, reaching an LOQ in the order of ppb for both matrices, using samples of 100 µL or 0.2 g. The new HPLC-MS/MS assay was successfully applied to study the pharmacokinetics of NAZ after chronic intraperitoneal administration in mice at a dose of 30 mg/kg. One hour after treatment, plasma concentrations of NAZ were in the range of 336-2640 ng/mL. Moreover, unlike the brains of healthy mice or those with healed mechanical injuries, we found that NAZ was able to cross the injured blood-brain barrier of tumor-infiltrated brains. Thus, following i.p. administration, NAZ reaches systemic levels suitable for testing its efficacy in preclinical models of glioblastoma. Overall, these pharmacokinetic data provide robust evidence supporting the repositioning of NAZ as an antitumor drug.

7.
Front Oncol ; 12: 851790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299737

RESUMO

Immune cells in the tumor micro-environment (TME) establish a complex relationship with cancer cells and may strongly influence disease progression and response to therapy. It is well established that myeloid cells infiltrating tumor tissues favor cancer progression. Tumor-Associated Macrophages (TAMs) are abundantly present at the TME and actively promote cancer cell proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Active research of the last decade has provided novel therapeutic approaches aimed at depleting TAMs and/or at reprogramming their functional activities. We reported some years ago that the registered anti-tumor agent trabectedin and its analogue lurbinectedin have numerous mechanisms of action that also involve direct effects on immune cells, opening up new interesting points of view. Trabectedin and lurbinectedin share the unique feature of being able to simultaneously kill cancer cells and to affect several features of the TME, most notably by inducing the rapid and selective apoptosis of monocytes and macrophages, and by inhibiting the transcription of several inflammatory mediators. Furthermore, depletion of TAMs alleviates the immunosuppressive milieu and rescues T cell functional activities, thus enhancing the anti-tumor response to immunotherapy with checkpoint inhibitors. In view of the growing interest in tumor-infiltrating immune cells, the availability of antineoplastic compounds showing immunomodulatory effects on innate and adaptive immunity deserves particular attention in the oncology field.

8.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164277

RESUMO

The pharmacokinetic profile of ZST316 and ZST152, arginine analogues with inhibitory activity towards human dimethylarginine dimethylaminohydrolase-1 (DDAH1), was investigated in mice using a newly developed HPLC-MS/MS method. The method proved to be reproducible, precise, and accurate for the measurement of the compounds in plasma and urine. Four-week-old female FVB mice received a single dose of ZST316 and ZST152 by intravenous bolus (30 mg/Kg) and oral gavage (60 mg/Kg). ZST316 Cmax was 67.4 µg/mL (intravenous) and 1.02 µg/mL (oral), with a half-life of 6 h and bioavailability of 4.7%. ZST152 Cmax was 24.9 µg/mL (intravenous) and 1.65 µg/mL (oral), with a half-life of 1.2 h and bioavailability of 33.3%. Urinary excretion of ZST152 and ZST316 was 12.5%-22.2% and 2.3%-7.5%, respectively. At least eight urinary metabolites were identified. After chronic intraperitoneal treatment with the more potent DDAH1 inhibitor, ZST316 (30 mg/Kg/day for three weeks), the bioavailability was 59% and no accumulation was observed. Treatment was well tolerated with no changes in body weight vs. untreated animals and no clinical signs of toxicity or distress. The results of this study show that ZST316 has a favorable pharmacokinetic profile, following intraperitoneal administration, to investigate the effects of DDAH1 inhibition in mice.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacocinética , Animais , Arginina/administração & dosagem , Arginina/análogos & derivados , Arginina/farmacocinética , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Espectrometria de Massas em Tandem
10.
Talanta ; 237: 122918, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736656

RESUMO

Pioglitazone is a Peroxisome Proliferator-Activated Receptor (PPAR) agonist of the thiazolidinedione class of compounds with promising anticancer activity. An innovative quantitative mass spectrometry imaging (MSI) method and a HPLC-UV method were developed and validated to investigate its distribution in tumor and liver tissues. The MSI method is based on stable isotope normalization and resulted highly specific and sensitive (0.2 pmol/spot). The correct identification of the drug ion signal is confirmed by MS/MS analysis on tissue. The method shows an optimal lateral resolution (25 µm) relying on the ionization efficiency and fine laser diameter of the atmospheric pressure MALDI source. The HPLC-UV method is simple and straightforward involving quick protein precipitation and shows good sensitivity (50ng/sample) using a small starting volume of biological sample. Thus, it is applicable to samples obtained from both preclinical models and clinical surgical procedures. MSI and HPLC-UV assays were validated assessing linearity, intra- and inter-day precision and accuracy, limit of quantification, selectivity and recovery. These are the first methods developed and validated for the analysis of pioglitazone in tissues, and they were applied successfully to myxoid liposarcoma xenograft-bearing mice, which received clinically relevant drug doses. Pioglitazone was measured by either method in sections of tumor and liver 2, 6 and 24 h post-treatment. Drug distribution was relatively homogeneous.


Assuntos
Pressão Atmosférica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Camundongos , Pioglitazona , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Eur J Immunol ; 51(11): 2677-2686, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34570376

RESUMO

A considerable proportion of cancer patients are resistant or only partially responsive to immune checkpoint blockade immunotherapy. Tumor-Associated Macrophages (TAMs) infiltrating the tumor stroma suppress the adaptive immune responses and, hence, promote tumor immune evasion. Depletion of TAMs or modulation of their protumoral functions is actively pursued, with the purpose of relieving this state of immunesuppression. We previously reported that trabectedin, a registered antitumor compound, selectively reduces monocytes and TAMs in treated tumors. However, its putative effects on the adaptive immunity are still unclear. In this study, we investigated whether treatment of tumor-bearing mice with trabectedin modulates the presence and functional activity of T-lymphocytes. In treated tumors, there was a significant upregulation of T cell-associated genes, including CD3, CD8, perforin, granzyme B, and IFN-responsive genes (MX1, CXCL10, and PD-1), indicating that T lymphocytes were activated after treatment. Notably, the mRNA levels of the Pdcd1 gene, coding for PD-1, were strongly increased. Using a fibrosarcoma model poorly responsive to PD-1-immunotherapy, treatment with trabectedin prior to anti-PD-1 resulted in improved antitumor efficacy. In conclusion, pretreatment with trabectedin enhances the therapeutic response to checkpoint inhibitor-based immunotherapy. These findings provide a good rational for the combination of trabectedin with immunotherapy regimens.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Experimentais/imunologia , Trabectedina/farmacologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Fibrossarcoma/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Evasão Tumoral/efeitos dos fármacos , Evasão Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
12.
J Exp Clin Cancer Res ; 40(1): 286, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507591

RESUMO

BACKGROUND: Scarce drug penetration in solid tumours is one of the possible causes of the limited efficacy of chemotherapy and is related to the altered tumour microenvironment. The abnormal tumour extracellular matrix (ECM) together with abnormal blood and lymphatic vessels, reactive stroma and inflammation all affect the uptake, distribution and efficacy of anticancer drugs. METHODS: We investigated the effect of PEGylated recombinant human hyaluronidase PH20 (PEGPH20) pre-treatment in degrading hyaluronan (hyaluronic acid; HA), one of the main components of the ECM, to improve the delivery of antitumor drugs and increase their therapeutic efficacy. The antitumor activity of paclitaxel (PTX) in HA synthase 3-overexpressing and wild-type SKOV3 ovarian cancer model and in the BxPC3 pancreas xenograft tumour model, was evaluated by monitoring tumour growth with or without PEGPH20 pre-treatment. Pharmacokinetics and tumour penetration of PTX were assessed by HPLC and mass spectrometry imaging analysis in the same tumour models. Tumour tissue architecture and HA deposition were analysed by histochemistry. RESULTS: Pre-treatment with PEGPH20 modified tumour tissue architecture and improved the antitumor activity of paclitaxel in the SKOV3/HAS3 tumour model, favouring its accumulation and more homogeneous intra-tumour distribution, as assessed by quantitative and qualitative analysis. PEGPH20 also reduced HA content influencing, though less markedly, PTX distribution and antitumor activity in the BxPC3 tumour model. CONCLUSION: Remodelling the stroma of HA-rich tumours by depletion of HA with PEGPH20 pre-treatment, is a potentially successful strategy to improve the intra-tumour distribution of anticancer drugs, increasing their therapeutic efficacy, without increasing toxicity.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Hialuronoglucosaminidase/uso terapêutico , Neoplasias/tratamento farmacológico , Paclitaxel/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Feminino , Humanos , Hialuronoglucosaminidase/farmacologia , Camundongos , Paclitaxel/farmacologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Genomics ; 113(5): 3439-3448, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339817

RESUMO

Myxoid liposarcoma (MLPS) is a rare soft-tissue sarcoma characterised by the expression of FUS-DDIT3 chimera. Trabectedin has shown significant clinical anti-tumour activity against MLPS. To characterise the molecular mechanism of trabectedin sensitivity and of resistance against it, we integrated genomic and transcriptomic data from treated mice bearing ML017 or ML017/ET, two patient-derived MLPS xenograft models, sensitive to and resistant against trabectedin, respectively. Longitudinal RNA-Seq analysis of ML017 showed that trabectedin acts mainly as a transcriptional regulator: 15 days after the third dose trabectedin modulates the transcription of 4883 genes involved in processes that sustain adipocyte differentiation. No such differences were observed in ML017/ET. Genomic analysis showed that prolonged treatment causes losses in 4p15.2, 4p16.3 and 17q21.3 cytobands leading to acquired-resistance against the drug. The results dissect the complex mechanism of action of trabectedin and provide the basis for novel combinatorial approaches for the treatment of MLPS that could overcome drug-resistance.


Assuntos
Lipossarcoma Mixoide , Adulto , Animais , Modelos Animais de Doenças , Humanos , Lipossarcoma Mixoide/tratamento farmacológico , Lipossarcoma Mixoide/genética , Lipossarcoma Mixoide/patologia , Camundongos , Trabectedina/uso terapêutico
14.
Cancer Treat Rev ; 90: 102101, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32892058

RESUMO

Malignant pleural mesothelioma (MPM) is a rare malignancy mainly caused by asbestos exposure. Germinal and acquired mutations in genes of DNA repair pathways, in particular of homologous recombination repair, are frequent in MPM. Here we overview the available experimental data suggesting that an impaired DNA repair system affects MPM pathogenesis by leaving lesions through the genome unresolved. DNA repair defects represent a vulnerability of MPM, and it seems plausible to propose that leveraging these deficiencies could have therapeutic potential for patients with MPM, for whom there is an urgent need of more effective therapies.


Assuntos
Reparo do DNA , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma Maligno/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Dano ao DNA , Humanos , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Cancers (Basel) ; 12(8)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824440

RESUMO

Trabectedin (ET743) and lurbinectedin (PM01183) limit the production of inflammatory cytokines that are elevated during cancer cachexia. Mice carrying C26 colon adenocarcinoma display cachexia (i.e., premature death and body wasting with muscle, fat and cardiac tissue depletion), high levels of inflammatory cytokines and subsequent splenomegaly. We tested whether such drugs protected these mice from cachexia. Ten-week-old mice were inoculated with C26 cells and three days later randomized to receive intravenously vehicle or 0.05 mg/kg ET743 or 0.07 mg/kg PM01183, three times a week for three weeks. ET743 or PM01183 extended the lifespan of C26-mice by 30% or 85%, respectively, without affecting tumor growth or food intake. Within 13 days from C26 implant, both drugs did not protect fat, muscle and heart from cachexia. Since PM01183 extended the animal survival more than ET743, we analyzed PM01183 further. In tibialis anterior of C26-mice, but not in atrophying myotubes, PM01183 restrained the NF-κB/PAX7/myogenin axis, possibly reducing the pro-inflammatory milieu, and failed to limit the C/EBPß/atrogin-1 axis. Inflammation-mediated splenomegaly of C26-mice was inhibited by PM01183 for as long as the treatment lasted, without reducing IL-6, M-CSF or IL-1ß in plasma. ET743 and PM01183 extend the survival of C26-bearing mice unchanging tumor growth or cachexia but possibly restrain muscle-related inflammation and C26-induced splenomegaly.

16.
Cancers (Basel) ; 12(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752156

RESUMO

Malignant Pleural Mesothelioma (MPM) is an aggressive tumor of the pleural lining that is usually identified at advanced stages and resistant to current therapies. Appropriate pre-clinical mouse tumor models are of pivotal importance to study its biology. Usually, tumor cells have been injected intraperitoneally or subcutaneously. Using three available murine mesothelioma cell lines with different histotypes (sarcomatoid, biphasic, epithelioid), we have set up a simplified model of in vivo growth orthotopically by inoculating tumor cells directly in the thorax with a minimally invasive procedure. Mesothelioma tumors grew along the pleura and spread on the superficial areas of the lungs, but no masses were found outside the thoracic cavity. As observed in human MPM, tumors were highly infiltrated by macrophages and T cells. The luciferase-expressing cells can be visualized in vivo by bioluminescent optical imaging to precisely quantify tumor growth over time. Notably, the bioluminescence signal detected in vivo correctly matched the tumor burden quantified with classical histology. In contrast, the subcutaneous or intraperitoneal growth of these mesothelioma cells was considered either non-representative of the human disease or unreliable to precisely quantify tumor load. Our non-invasive in vivo model of mesothelioma is simple and reproducible, and it reliably recapitulates the human disease.

17.
Int J Biol Sci ; 16(8): 1363-1375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210725

RESUMO

Rationale: Optimal intratumor distribution of an anticancer drug is fundamental to reach an active concentration in neoplastic cells, ensuring the therapeutic effect. Determination of drug concentration in tumor homogenates by LC-MS/MS gives important information about this issue but the spatial information gets lost. Targeted mass spectrometry imaging (MSI) has great potential to visualize drug distribution in the different areas of tumor sections, with good spatial resolution and superior specificity. MSI is rapidly evolving as a quantitative technique to measure the absolute drug concentration in each single pixel. Methods: Different inorganic nanoparticles were tested as matrices to visualize the PARP inhibitors (PARPi) niraparib and olaparib. Normalization by deuterated internal standard and a custom preprocessing pipeline were applied to achieve a reliable single pixel quantification of the two drugs in human ovarian tumors from treated mice. Results: A quantitative method to visualize niraparib and olaparib in tumor tissue of treated mice was set up and validated regarding precision, accuracy, linearity, repeatability and limit of detection. The different tumor penetration of the two drugs was visualized by MSI and confirmed by LC-MS/MS, indicating the homogeneous distribution and higher tumor exposure reached by niraparib compared to olaparib. On the other hand, niraparib distribution was heterogeneous in an ovarian tumor model overexpressing the multidrug resistance protein P-gp, a possible cause of resistance to PARPi. Conclusions: The current work highlights for the first time quantitative distribution of PAPRi in tumor tissue. The different tumor distribution of niraparib and olaparib could have important clinical implications. These data confirm the validity of MSI for spatial quantitative measurement of drug distribution providing fundamental information for pharmacokinetic studies, drug discovery and the study of resistance mechanisms.


Assuntos
Antineoplásicos/farmacocinética , Indazóis/farmacocinética , Espectrometria de Massas/métodos , Neoplasias Ovarianas/tratamento farmacológico , Ftalazinas/farmacocinética , Piperazinas/farmacocinética , Piperidinas/farmacocinética , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Íons , Limite de Detecção , Camundongos , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reprodutibilidade dos Testes
20.
Clin Cancer Res ; 25(24): 7565-7575, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31481505

RESUMO

PURPOSE: This study was aimed at investigating whether the PPARγ agonist pioglitazone-given in combination with trabectedin-is able to reactivate adipocytic differentiation in myxoid liposarcoma (MLS) patient-derived xenografts, overcoming resistance to trabectedin. EXPERIMENTAL DESIGN: The antitumor and biological effects of trabectedin, pioglitazone, and the combination of the two drugs were investigated in nude mice bearing well-characterized MLS xenografts representative of innate or acquired resistance against trabectedin. Pioglitazone and trabectedin were given by daily oral and weekly i.v. administrations, respectively. Molecular studies were performed by using microarrays approach, real-time PCR, and Western blotting. RESULTS: We found that the resistance of MLS against trabectedin is associated with the lack of activation of adipogenesis. The PPARγ agonist pioglitazone reactivated adipogenesis, assessed by histologic and gene pathway analyses. Pioglitazone was well tolerated and did not increase the toxicity of trabectedin. The ability of pioglitazone to reactivate adipocytic differentiation was observed by morphologic examination, and it is consistent with the increased expression of genes such as ADIPOQ implicated in the adipogenesis process. The determination of adiponectin by Western blotting constitutes a good and reliable biomarker related to MLS adipocytic differentiation. CONCLUSIONS: The finding that the combination of pioglitazone and trabectedin induces terminal adipocytic differentiation of some MLSs with the complete pathologic response and cure of tumor-bearing mice provides a strong rationale to test the combination of trabectedin and pioglitazone in patients with MLS.


Assuntos
Adipócitos/patologia , Diferenciação Celular , Resistencia a Medicamentos Antineoplásicos , Lipossarcoma Mixoide/tratamento farmacológico , PPAR gama/agonistas , Pioglitazona/farmacologia , Trabectedina/farmacologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Feminino , Humanos , Hipoglicemiantes/farmacologia , Lipossarcoma Mixoide/metabolismo , Lipossarcoma Mixoide/patologia , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA