Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Lab Anim (NY) ; 53(7): 181-185, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886565

RESUMO

For the preparation of embryo transfer recipients, surgically vasectomized mice are commonly used, generated by procedures associated with pain and discomfort. Sterile transgenic strains provide a nonsurgical replacement, but their maintenance requires breeding and genotyping procedures. We have previously reported the use of naturally sterile STUSB6F1 hybrids for the production of embryo transfer recipients and found the behavior of these recipients to be indistinguishable from those generated by vasectomized males. The method provides two substantial 3R impacts: refinement (when compared with surgical vasectomy) and reduction in breeding procedures (compared with sterile transgenic lines). Despite initial promise, the 3Rs impact of this innovation was limited by difficulties in breeding the parental STUS/Fore strain, which precluded the wider distribution of the sterile hybrid. The value of a 3R initiative is only as good as the uptake in the community. Here we, thus, select a different naturally sterile hybrid, generated from strains that are widely available: the B6SPRTF1 hybrid between C57BL/6J and Mus spretus. We first confirmed its sterility by sperm counting and testes weight and then trialed the recovery of cryopreserved embryos and germplasm within three UK facilities. Distribution of sperm for the generation of these hybrids by in vitro fertilization was found to be the most robust distribution method and avoided the need to maintain a live M. spretus colony. We then tested the suitability of B6SPRTF1 sterile hybrids for the generation of embryo transfer recipients at these same three UK facilities and found the hybrids to be suitable when compared with surgical vasectomized mice and a sterile transgenic strain. In conclusion, the potential 3Rs impact of this method was confirmed by the ease of distribution and the utility of sterile B6SPRTF1 hybrids at independent production facilities.


Assuntos
Transferência Embrionária , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Transferência Embrionária/veterinária , Transferência Embrionária/métodos , Feminino , Hibridização Genética , Pseudogravidez/genética , Pseudogravidez/veterinária , Criopreservação/veterinária , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Vasectomia/veterinária , Vasectomia/métodos
2.
Genes (Basel) ; 13(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36292777

RESUMO

WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and ArabidopsisWRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop.


Assuntos
Arabidopsis , Musa , Musa/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Arabidopsis/genética , Aminoácidos/genética , Zinco/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-32612987

RESUMO

During the latest years, human infertility worsened all over the world and is nowadays reputed as a global public health issue. As a consequence, the adoption of Assisted Reproductive Technologies (ARTs) such as In Vitro Fertilization (IVF) is undergoing an impressive increase. In this context, one of the most promising strategies is the innovative adoption of extra-physiological materials for advanced sperm preparation methods. Here, by using a murine model, the addition of Graphene Oxide (GO) at a specific concentration has demonstrated to increase the spermatozoa fertilizing ability in an IVF assay, finding that 0.5 µg/ml GO addition to sperm suspensions before IVF is able to increase both the number of fertilized oocytes and embryos created with a healthy offspring given by Embryo Transplantation (ET). In addition, GO treatment has been found more effective than that carried out with methyl-ß-cyclodextrin, which represents the gold standard in promoting in vitro fertility of mice spermatozoa. Subsequent biochemical characterization of its interaction with male gametes has been additionally performed. As a result, it was found that GO exerts its positive effect by extracting cholesterol from membranes, without affecting the integrity of microdomains and thus preserving the sperm functions. In conclusion, GO improves IVF outcomes in vitro and in vivo, defining new perspectives for innovative strategies in the treatment of human infertility.

5.
Theriogenology ; 119: 52-59, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982136

RESUMO

The mouse is widely used for biomedical research and an increasing number of genetically altered models are currently generated, therefore centralized repositories are essentials to secure the important mouse strains that have been developed. We have previously reported that spermatozoa of wild type and mutant strains frozen using standard laboratory protocols can be transported in dry ice (-79 °C) for 7 days and safely stored in a -80 °C freezer for up to two years. The objective of this new study was to compare the effects of the freezing techniques using LN2 or -80 °C freezer on fertility of frozen-thawed mouse spermatozoa. After thawing, sperm fertility was comparable (P > 0,05) between the LN2 and the -80 °C samples for at least 1 year. Furthermore, we showed that it is possible to freeze and store mouse semen directly at -80 °C and eventually transfer it to LN2 irrespective of storage time. This study is relevant because it shows for the first time that mouse spermatozoa can be efficiently frozen and stored at -80 °C with no use of liquid nitrogen for a long period of time. A new, simple, efficient and flexible, liquid nitrogen free, method was developed for freezing and maintaining spermatozoa of wild type and mutant C57BL/6N lines. Lines on this genetic background are used in collaborative research infrastructures for systematic phenotyping, e.g. the International Mouse Phenotyping Consortium (IMPC) and therefore largely cryopreserved in repositories like EMMA/Infrafrontier. The importance of this finding will be especially useful for small laboratories with no or limited access to liquid nitrogen and for laboratories generating many mouse mutant lines by CRISPR/Cas9 who do not want to saturate the limited space of a LN2 tank, using a more accessible -80 °C freezer. This study underlines, once more, that mouse spermatozoa are very resistant and can be frozen, transported, shared and stored at -80 °C for a long time without a significant loss of viability. This new approach simplifies the freezing process and facilitates the long term storage of mouse spermatozoa at -80 °C, always allowing the transfer to LN2 for indefinite storage without noticeable detrimental effects.


Assuntos
Criopreservação/veterinária , Espermatozoides/fisiologia , Animais , Sobrevivência Celular , Criopreservação/métodos , Transferência Embrionária/veterinária , Embrião de Mamíferos , Feminino , Congelamento , Masculino , Camundongos , Gravidez , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Temperatura
6.
Theriogenology ; 107: 41-49, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29128700

RESUMO

Maintaining mouse stocks as frozen materials offers both ethical and economical advantages over live animal breeding if the lines are not actively used. The European Mouse Mutant Archive (EMMA) promotes the archiving and distribution of important mouse models for biomedical research through the cryopreservation of their embryos and gametes. Embryo freezing in liquid nitrogen (LN2) at -196 °C has traditionally been the method of choice for archiving mouse lines. However, sperm freezing is emerging as a more convenient alternative due to the application of innovative cryopreservation and recovery protocols. In addition, frozen spermatozoa are less sensitive to post-freezing temperature fluctuations. We have previously reported that spermatozoa frozen using standard laboratory protocols can be safely stored in a -80 °C freezer or in dry ice (-79 °C) for at least seven days. We now report the extension of this period of maintenance at -80 °C up to two 2 years both for wild type and mutant strains, indicating that once frozen, mouse spermatozoa are quite resistant and can be transported, shared and stored at -80 °C for a long time without a significant loss of viability. The importance of this finding will be especially relevant for small laboratories with no constant access to liquid nitrogen and for labs generating many mouse mutant lines by CRISPR/Cas9 who do not want to saturate the limited space of a LN2 tank, using a more accessible -80 °C freezer.


Assuntos
Criopreservação/veterinária , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Animais , Sobrevivência Celular , Criopreservação/métodos , Congelamento , Ciência dos Animais de Laboratório , Masculino , Camundongos , Preservação do Sêmen/métodos , Manejo de Espécimes , Motilidade dos Espermatozoides , Fatores de Tempo
7.
Mamm Genome ; 28(7-8): 383-387, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28726007

RESUMO

Cryopreservation is seen as a key aspect of good colony management which supports the drive towards improvements in animal care and the implementation of the 3Rs. However, following the advent of gene editing technologies, the generation of new mouse models is quicker and cheaper than ever before. This has led some to question the future value of biobanks around the world. In the following commentary, we argue that the need to cryopreserve mouse strains and distribute them from well-funded repositories is as strong as it has ever been. Repositories are not simply archives for unwanted mouse strains. Biobanks distribute identical QC verified mouse strains to the community and eliminate the need to recreate mice. They provide a check point in the development of mouse strains that minimises genetic drift and breeding failures. What is more, cryopreservation makes resource sharing easier, cheaper and improves animal care by eliminating the need for live animal shipments.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Mutação , Animais , Animais Geneticamente Modificados , Bancos de Espécimes Biológicos/normas , Criopreservação/métodos , Criopreservação/normas , Genótipo , Humanos , Fenótipo , Especificidade da Espécie , Terminologia como Assunto
8.
Theriogenology ; 96: 49-57, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532839

RESUMO

Disseminating mouse stocks as frozen materials offers both ethical and logistical advantages over live animal shipment, minimizing the welfare issues and avoiding some of the complex custom regulations that are associated with live animal transportation. Embryo freezing in liquid nitrogen (LN2) at -196 °C has traditionally been the method of choice for archiving mouse lines. However, spermatozoa freezing is emerging as a more convenient alternative due to the application of innovative cryopreservation and recovery protocols. In addition, frozen spermatozoa are less sensitive to post-freezing temperature fluctuations. Here we demonstrated that spermatozoa frozen using standard laboratory protocols can be safely stored in dry ice (-79 °C) for at least seven days. The protocol we report here is robust and has been validated in a multi-centric study involving mouse spermatozoa samples exchanged between five European Mouse Mutant Archive (EMMA) nodes. Furthermore, following shipment on dry ice the spermatozoa can be returned to LN2 for long term storage without any noticeable detrimental effect. This protocol permits frozen spermatozoa to be shared and shipped in dry ice between biorepositories, networks and scientific institutions at low cost, using common courier companies, while avoiding the complexities, risks and hazards associated with using a traditional LN2 dry-shipper.


Assuntos
Criopreservação , Gelo-Seco , Congelamento , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Animais , Masculino , Camundongos , Preservação do Sêmen/métodos , Manejo de Espécimes , Motilidade dos Espermatozoides , Fatores de Tempo
9.
BMC Cell Biol ; 17(1): 30, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27496052

RESUMO

BACKGROUND: Karyotypic integrity is essential for the successful germline transmission of alleles mutated in embryonic stem (ES) cells. Classical methods for the identification of aneuploidy involve cytological analyses that are both time consuming and require rare expertise to identify mouse chromosomes. RESULTS: As part of the International Mouse Phenotyping Consortium, we gathered data from over 1,500 ES cell clones and found that the germline transmission (GLT) efficiency of clones is compromised when over 50 % of cells harbour chromosome number abnormalities. In JM8 cells, chromosomes 1, 8, 11 or Y displayed copy number variation most frequently, whilst the remainder generally remain unchanged. We developed protocols employing droplet digital polymerase chain reaction (ddPCR) to accurately quantify the copy number of these four chromosomes, allowing efficient triage of ES clones prior to microinjection. We verified that assessments of aneuploidy, and thus decisions regarding the suitability of clones for microinjection, were concordant between classical cytological and ddPCR-based methods. Finally, we improved the method to include assay multiplexing so that two unstable chromosomes are counted simultaneously (and independently) in one reaction, to enhance throughput and further reduce the cost. CONCLUSION: We validated a PCR-based method as an alternative to classical karyotype analysis. This technique enables laboratories that are non-specialist, or work with large numbers of clones, to precisely screen ES cells for the most common aneuploidies prior to microinjection to ensure the highest level of germline transmission potential. The application of this method allows early exclusion of aneuploid ES cell clones in the ES cell to mouse conversion process, thus improving the chances of obtaining germline transmission and reducing the number of animals used in failed microinjection attempts. This method can be applied to any other experiments that require accurate analysis of the genome for copy number variation (CNV).


Assuntos
Aneuploidia , Cariotipagem/métodos , Metáfase , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Reação em Cadeia da Polimerase/métodos , Animais , Células Cultivadas , Cromossomos de Mamíferos/metabolismo , Variações do Número de Cópias de DNA , Células Germinativas , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Genet ; 48(8): 912-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376238

RESUMO

Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations.


Assuntos
Animais não Endogâmicos/genética , Mapeamento Cromossômico , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Haplótipos/genética , Herança Multifatorial/genética , Locos de Características Quantitativas/genética , Animais , Genótipo , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
11.
Theriogenology ; 86(2): 579-88, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26972226

RESUMO

Since its discovery in 2003, murine norovirus (MNV) is still endemic in many rodent animal facilities. Our aim was to determine the risk of transmission of MNV (91% homology to MNV3) to embryo recipients and pups via assisted reproductive technologies, especially those which compromise the integrity of the zona pellucida. In vitro fertilization (IVF), assisted in vitro fertilization (AIVF) with reduced glutathione, intracytoplasmic sperm injection, and ovary transplantation were performed. Murine norovirus was detected by qualitative and quantitative reverse transcription polymerase chain reaction. After natural infection of immunocompetent C57BL/6NTacCnrm and immunodeficient athymic nude mice with MNV, the mesenteric lymph nodes, small intestine, spleen, liver, lung, brain, ovary, and testis were infected at specific intervals for more than a 1-year period. At Week 12, the number of viral genomes per milligram of gonad from both strains was 20 to 50. Murine norovirus strictly adhered to spermatozoa collected from infected mice because three washes did not remove MNV from the sperm. After using MNV-positive sperm for IVF, AIVF, and intracytoplasmic sperm injection, 27 to 30 genomes were detected in IVF (n = 100) and AIVF (n = 100) embryos from both mouse strains. Approximately 87% of MNV detected in these embryos was found in the zona pellucida. However, all embryo transfer recipients, pups, and ovary recipients were MNV-negative. The results indicate that manipulation of the germplasm through assisted reproductive technologies did not lead to transmission of MNV to mice. This may be because of the absence of an infectious dose or failure of the MNV strain to replicate effectively in developing embryos and the reproductive tract.


Assuntos
Infecções por Caliciviridae/transmissão , Fertilização in vitro/efeitos adversos , Norovirus/classificação , Transplante de Órgãos/efeitos adversos , Ovário/transplante , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Animais , Infecções por Caliciviridae/virologia , Feminino , Camundongos
12.
Dis Model Mech ; 9(1): 69-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611891

RESUMO

Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (10(4)-10(5) colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria.


Assuntos
Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/fisiopatologia , Haemophilus influenzae , Otite Média/microbiologia , Otite Média/fisiopatologia , Animais , Azitromicina/química , Modelos Animais de Doenças , Infecções por Haemophilus/genética , Heterozigoto , Imunidade Inata , Inflamação , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Microesferas , Mutação , Otite Média/genética , Transdução de Sinais , Células-Tronco
13.
Nat Genet ; 47(9): 969-978, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214591

RESUMO

The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.


Assuntos
Estudos de Associação Genética , Animais , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anotação de Sequência Molecular , Mutação , Fenótipo
14.
PLoS One ; 10(2): e0117378, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659103

RESUMO

Differential marking of genes in female and male gametes by DNA methylation is essential to genomic imprinting. In female gametes transcription traversing differentially methylated regions (DMRs) is a common requirement for de novo methylation at DMRs. At the imprinted Gnas cluster oocyte specific transcription of a protein-coding transcript, Nesp, is needed for methylation of two DMRs intragenic to Nesp, namely the Nespas-Gnasxl DMR and the Exon1A DMR, thereby enabling expression of the Gnas transcript and repression of the Gnasxl transcript. On the paternal allele, Nesp is repressed, the germline DMRs are unmethylated, Gnas is repressed and Gnasxl is expressed. Using mutant mouse models, we show that on the paternal allele, ectopic transcription of Nesp traversing the intragenic Exon1A DMR (which regulates Gnas expression) results in de novo methylation of the Exon1A DMR and de-repression of Gnas just as on the maternal allele. However, unlike the maternal allele, methylation on the mutant paternal allele occurs post-fertilisation, i.e. in somatic cells. This, to our knowledge is the first example of transcript/transcription driven DNA methylation of an intragenic CpG island, in somatic tissues, suggesting that transcription driven de novo methylation is not restricted to the germline in the mouse. Additionally, Gnasxl is repressed on a paternal chromosome on which Nesp is ectopically expressed. Thus, a paternally inherited Gnas cluster showing ectopic expression of Nesp is "maternalised" in terms of Gnasxl and Gnas expression. We show that these mice have a phenotype similar to mutants with two expressed doses of Gnas and none of Gnasxl.


Assuntos
Metilação de DNA/fisiologia , DNA Intergênico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/biossíntese , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Família Multigênica/fisiologia , Transcrição Gênica/fisiologia , Alelos , Animais , Cromograninas , Ilhas de CpG/fisiologia , DNA Intergênico/genética , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Masculino , Camundongos , Camundongos Mutantes
15.
Curr Protoc Mouse Biol ; 4(4): 205-27, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25723186

RESUMO

The ability to interrogate the entire coding sequence of the mouse combined with the tools to manipulate the genome has firmly established the mouse as the model organism of choice for studying the causes of human disease. Consequently, a huge number of novel mouse models are generated each year to support active research programs. However, it is neither ethically justifiable, nor economically viable to maintain mouse colonies on the shelf that are not part of active research programs. This means that novel mouse lines have to be preserved in some way. If this is not done and the line is simply killed off, the genetics will be lost to future generations of scientists. This article describes the current practices used in cryopreservation laboratories to archive and recover mouse embryos frozen using controlled-rate freezing and vitrification techniques.


Assuntos
Criopreservação/métodos , Modelos Animais de Doenças , Embrião de Mamíferos/fisiologia , Animais , Congelamento , Humanos , Camundongos , Vitrificação
16.
Curr Protoc Mouse Biol ; 4(2): 67-83, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25723919

RESUMO

Historically, timed mating of either naturally cycling or superovulated females has been the mainstay of pre-implantation embryo production. However, rising cage costs and the rapid expansion of biomedical research programs has necessitated the development of high-throughput approaches to mouse embryo production. In vitro fertilization (IVF) represents one such versatile tool offering many advantages to busy mouse facilities in terms of efficient use of space and resources. For example, strains can be taken off the shelf, frozen quickly as sperm, and recovered at a later date, small colonies can be rapidly expanded to meet demand, and IVF can be used to rescue strains that fail to breed or where the founder male is ill or has died suddenly. This article describes an IVF protocol currently used by many reproductive technologists to assist mouse biology programs.


Assuntos
Fertilização in vitro/métodos , Glutationa/química , Camundongos/fisiologia , beta-Ciclodextrinas/química , Animais , Criopreservação , Feminino , Masculino , Espermatozoides/fisiologia
17.
Curr Protoc Mouse Biol ; 4(2): 47-65, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25723918

RESUMO

The 21st century has seen a huge proliferation in the availability of genetically altered mice. The availability of these resources has been accompanied by ever greater opportunities for international collaborations between laboratories involving the exchange of mouse strains. This exchange can involve significant costs in terms of animal welfare and transportation expenses. In an attempt to mitigate some of these costs, the mouse community has developed a battery of techniques that can be used to avoid transporting live mice. Transporting frozen embryos and sperm at liquid nitrogen (LN2 ) temperatures using dry shippers has been common practice for some time. However, current advances in this field have refined transportation procedures and introduced new techniques for disseminating embryos and sperm: for example, shipping frozen sperm on dry ice, exchanging unfrozen epididymides from which sperm can be extracted, and transporting frozen/thawed embryos in isotonic media. This article discusses some of the current practices used by laboratories to transport mouse strains around the world without having to exchange live mice.


Assuntos
Criopreservação/métodos , Embrião de Mamíferos/fisiologia , Epididimo/fisiologia , Camundongos/fisiologia , Espermatozoides/fisiologia , Meios de Transporte/métodos , Animais , Masculino
18.
Curr Protoc Mouse Biol ; 4(3): 85-104, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25723962

RESUMO

Each year, thousands of new mouse models are generated around the world to further biomedical research. Unfortunately, the cost of maintaining mouse colonies makes it uneconomical to keep strains on the shelf that are not part of active research programs. Ideally, these retired strains should be archived. If this is not done and the line is simply killed off, the genetics are lost to future generations of scientists. Traditionally, embryo freezing has been used to cryopreserve mice, but this is expensive, time consuming, requires large numbers of donor females, and usually involves invasive superovulation procedures. Sperm freezing circumvents all of these disadvantages and is rapidly becoming the technique of choice for many repositories. This has been made possible through the use of refined cryoprotective agents and the development of improved in vitro fertilization techniques. This article describes two popular sperm freezing techniques employed by mouse repositories to archive spermatozoa using cryoprotective agents supplemented with either L-glutamine or monothioglycerol.


Assuntos
Criopreservação/métodos , Crioprotetores/química , Glutamina/química , Glicerol/análogos & derivados , Preservação do Sêmen/métodos , Espermatozoides/fisiologia , Animais , Glicerol/química , Humanos , Masculino , Camundongos , Modelos Animais
19.
PLoS One ; 8(1): e49316, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341870

RESUMO

Procedures for cryopreserving embryos vary considerably, each having its specific advantages and disadvantages in terms of technical feasibility, embryo survival yield, temperature permissibility and species- or strain-dependent applicability. Here we report a high osmolality vitrification (HOV) method that is advantageous in these respects. Cryopreservation by vitrification is generally very simple, but, unlike slow freezing, embryos should be kept at a supercooling temperature (below -130°C) to avoid cryodamage. We overcame this problem by using an HOV solution containing 42.5% (v/v) ethylene glycol, 17.3% (w/v) Ficoll and 1.0 M sucrose. This solution is more viscous than other cryopreservation solutions, but easy handling of embryos was assured by employing a less viscous equilibration solution before vitrification. Most (>80%) embryos cryopreserved in this solution survived at -80°C for at least 30 days. Normal mice were recovered even after intercontinental transportation in a conventional dry-ice package for 2-3 days, indicating that special containers such as dry shippers with liquid nitrogen vapor are unnecessary. The HOV solution could also be employed for long-term storage in liquid nitrogen, as with other conventional cryoprotectants. Finally, we confirmed that this new vitrification method could be applied successfully to embryos of all six strains of mice we have tested so far. Thus, our HOV method provides an efficient and reliable strategy for the routine cryopreservation of mouse embryos in animal facilities and biomedical laboratories, and for easy and cheap transportation.


Assuntos
Criopreservação/métodos , Embrião de Mamíferos/fisiologia , Temperatura , Vitrificação , Animais , Crioprotetores/farmacologia , Gelo-Seco , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Concentração Osmolar , Sobrevivência de Tecidos/efeitos dos fármacos , Meios de Transporte , Vitrificação/efeitos dos fármacos
20.
Mamm Genome ; 23(9-10): 600-10, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22961258

RESUMO

Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80% of the mutant lines. In addition, 57% of the lines were viable, 13% subviable, 30% embryonic lethal, and 7% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.


Assuntos
Genoma , Camundongos/genética , Animais , Europa (Continente) , Células Germinativas , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA