Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Toxicology ; 328: 168-78, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25549921

RESUMO

Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Encéfalo/efeitos dos fármacos , Exposição por Inalação/prevenção & controle , Intoxicação por Manganês/prevenção & controle , Manganês/toxicidade , Doença de Parkinson Secundária/prevenção & controle , Soldagem/métodos , Aerossóis , Poluentes Ocupacionais do Ar/química , Animais , Carga Corporal (Radioterapia) , Encéfalo/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Desenho de Equipamento , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Exposição por Inalação/efeitos adversos , Masculino , Manganês/química , Intoxicação por Manganês/etiologia , Intoxicação por Manganês/genética , Intoxicação por Manganês/metabolismo , Doença de Parkinson Secundária/etiologia , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/metabolismo , Tamanho da Partícula , Ratos Sprague-Dawley , Medição de Risco , Solubilidade , Fatores de Tempo , Soldagem/instrumentação
2.
Inhal Toxicol ; 26(12): 720-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25265048

RESUMO

Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD). Some applications in manufacturing industry employ a variant welding technology known as "weld-bonding" that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague-Dawley rats were exposed (25 mg/m³ targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood-brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Química Encefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Soldagem , Adesivos/química , Aerossóis , Poluentes Ocupacionais do Ar/química , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Incêndios , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/imunologia , Neurônios/metabolismo , Síndromes Neurotóxicas/imunologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/imunologia , Bulbo Olfatório/metabolismo , Oxirredução , Ratos Sprague-Dawley , Aço/química , Testes de Toxicidade Aguda , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade , Soldagem/métodos
3.
Inhal Toxicol ; 26(12): 697-707, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25140454

RESUMO

Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m³ to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (R(L)) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline R(L) was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased R(L) and result in endothelial dysfunction, but otherwise had minor effects on the lung.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Endotélio Vascular/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Vasculite/induzido quimicamente , Soldagem , Adesivos/química , Aerossóis , Animais , Células Cultivadas , Endotélio Vascular/imunologia , Endotélio Vascular/fisiopatologia , Incêndios , Hematopoese Extramedular/efeitos dos fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Leucócitos/patologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Masculino , Ratos Sprague-Dawley , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Organismos Livres de Patógenos Específicos , Baço/efeitos dos fármacos , Baço/imunologia , Baço/patologia , Aço/química , Testes de Toxicidade Aguda , Vasculite/imunologia , Vasculite/patologia , Vasculite/fisiopatologia , Soldagem/métodos
4.
Inhal Toxicol ; 26(12): 708-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25140455

RESUMO

Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.


Assuntos
Adesivos/química , Poluentes Ocupacionais do Ar/toxicidade , Exposição por Inalação/efeitos adversos , Metais/química , Testes de Toxicidade/instrumentação , Soldagem , Aerossóis , Poluentes Ocupacionais do Ar/química , Animais , Animais de Laboratório , Câmaras de Exposição Atmosférica , Automação Laboratorial , Incêndios , Microscopia Eletrônica de Varredura , National Institute for Occupational Safety and Health, U.S. , Tamanho da Partícula , Material Particulado/química , Material Particulado/toxicidade , Aço/química , Estados Unidos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/toxicidade , Soldagem/métodos
5.
Toxicol Pathol ; 42(3): 582-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23847039

RESUMO

Inhalation of diacetyl, a butter flavoring, causes airway responses potentially mediated by sensory nerves. This study examines diacetyl-induced changes in sensory nerves of tracheal epithelium. Rats (n = 6/group) inhaled 0-, 25-, 249-, or 346-ppm diacetyl for 6 hr. Tracheas and vagal ganglia were removed 1-day postexposure and labeled for substance P (SP) or protein gene product 9.5 (PGP9.5). Vagal ganglia neurons projecting to airway epithelium were identified by axonal transport of fluorescent microspheres intratracheally instilled 14 days before diacetyl inhalation. End points were SP and PGP9.5 nerve fiber density (NFD) in tracheal epithelium and SP-positive neurons projecting to the trachea. PGP9.5-immunoreactive NFD decreased in foci with denuded epithelium, suggesting loss of airway sensory innervation. However, in the intact epithelium adjacent to denuded foci, SP-immunoreactive NFD increased from 0.01 ± 0.002 in controls to 0.05 ± 0.01 after exposure to 346-ppm diacetyl. In vagal ganglia, SP-positive airway neurons increased from 3.3 ± 3.0% in controls to 25.5 ± 6.6% after inhaling 346-ppm diacetyl. Thus, diacetyl inhalation increases SP levels in sensory nerves of airway epithelium. Because SP release in airways promotes inflammation and activation of sensory nerves mediates reflexes, neural changes may contribute to flavorings-related lung disease pathogenesis.


Assuntos
Diacetil/toxicidade , Mucosa Respiratória , Substância P/metabolismo , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Animais , Corantes Fluorescentes , Exposição por Inalação , Masculino , Neurônios/química , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/química , Mucosa Respiratória/efeitos dos fármacos , Traqueia/citologia
6.
Environ Health Insights ; 8(Suppl 1): 63-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25861220

RESUMO

INTRODUCTION: Oil spill cleanup workers come into contact with numerous potentially hazardous chemicals derived from the oil spills, as well as chemicals applied for mitigation of the spill, including oil dispersants. In response to the Deepwater Horizon Macondo well oil spill in the Gulf of Mexico in 2010, a record volume of the oil dispersant, COREXIT EC9500A, was delivered via aerial applications, raising concern regarding potential health effects that may result from pulmonary exposure to the dispersant. METHODS: The current study examined the effects on pulmonary functions, cardiovascular functions, and systemic immune responses in rats to acute repeated inhalation exposure of COREXIT EC9500A at 25 mg/m(3), five hours per day, over nine work days, or filtered air (control). At one and seven days following the last exposure, a battery of parameters was measured to evaluate lung function, injury, and inflammation; cardiovascular function; peripheral vascular responses; and systemic immune responses. RESULTS: No significant alterations in airway reactivity were observed at one or seven days after exposure either in baseline values or following methacholine (MCh) inhalation challenge. Although there was a trend for an increase in lung neutrophils and phagocyte oxidant production at one-day post exposure, there were no significant differences in parameters of lung inflammation. In addition, increased blood monocytes and neutrophils, and decreased lymphocyte numbers at one-day post exposure also did not differ significantly from air controls, and no alterations in splenocyte populations, or serum or spleen immunoglobulin M (IgM) to antigen were observed. There were no significant differences in peripheral vascular responsiveness to vasoconstrictor and vasodilator agonists or in blood pressure (BP) responses to these agents; however, the baseline heart rate (HR) and HR responses to isoproterenol (ISO) were significantly elevated at one-day post exposure, with resolution by day 7. CONCLUSIONS: In summary, acute repeated exposure to COREXIT EC9500A did not alter pulmonary function, lung injury/inflammation, systemic immune responses, or vascular tone, but did cause transient chronotropic effects on cardiac function.

7.
Part Fibre Toxicol ; 10(1): 53, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24144386

RESUMO

BACKGROUND: Dosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice. RESULTS: Upon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 µg/m3 (geometric mean 4.21 µg/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 µg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose. CONCLUSION: These findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level.


Assuntos
Relação Dose-Resposta a Droga , Nanotubos de Carbono , Exposição Ocupacional , Animais , Humanos , Exposição por Inalação , Camundongos , Microscopia Eletrônica
8.
J Toxicol Environ Health A ; 76(11): 651-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23941635

RESUMO

Exposure to wet aerosols generated during use of spray products containing silver (Ag) has not been evaluated. The goal was to assess the potential for cardiopulmonary toxicity following an acute inhalation of wet silver colloid. Rats were exposed by inhalation to a low concentration (100 µg/m(3) ) using an undiluted commercial antimicrobial product (20 mg/L total silver; approximately 33 nm mean aerodynamic diameter [MAD]) or to a higher concentration (1000 µg/m(3)) using a suspension (200 mg/L total silver; approximately 39 nm MAD) synthesized to possess a similar size distribution of Ag nanoparticles for 5 h. Estimated lung burdens from deposition models were 0, 1.4, or 14 µg Ag/rat after exposure to control aerosol, low, and high doses, respectively. At 1 and 7 d postexposure, the following parameters were monitored: pulmonary inflammation, lung cell toxicity, alveolar air/blood barrier damage, alveolar macrophage activity, blood cell differentials, responsiveness of tail artery to vasoconstrictor or vasodilatory agents, and heart rate and blood pressure in response to isoproterenol or norepinephrine, respectively. Changes in pulmonary or cardiovascular parameters were absent or nonsignificant at 1 or 7 d postexposure with the exceptions of increased blood monocytes 1 d after high-dose Ag exposure and decreased dilation of tail artery after stimulation, as well as elevated heart rate in response to isoproterenol 1 d after low-dose Ag exposure, possibly due to bioavailable ionic Ag in the commercial product. In summary, short-term inhalation of nano-Ag did not produce apparent marked acute toxicity in this animal model.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Anti-Infecciosos/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Compostos de Prata/toxicidade , Lesão Pulmonar Aguda/metabolismo , Administração por Inalação , Aerossóis , Animais , Anti-Infecciosos/farmacocinética , Artérias/efeitos dos fármacos , Artérias/fisiopatologia , Cardiotônicos/farmacologia , Coloides , Hemodinâmica , Isoproterenol , Pulmão/metabolismo , Masculino , Norepinefrina , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Compostos de Prata/farmacocinética , Vasoconstritores
9.
J Toxicol Environ Health A ; 76(11): 669-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23941636

RESUMO

"Popcorn workers' lung" is an obstructive pulmonary disease produced by inhalation of volatile artificial butter flavorings. In rats, inhalation of diacetyl, a major component of butter flavoring, and inhalation of a diacetyl substitute, 2,3-pentanedione, produce similar damage to airway epithelium. The effects of diacetyl and 2,3-pentanedione and mixtures of diacetyl, acetic acid, and acetoin, all components of butter flavoring, on pulmonary function and airway reactivity to methacholine (MCh) were investigated. Lung resistance (RL) and dynamic compliance (Cdyn) were negligibly changed 18 h after a 6-h inhalation exposure to diacetyl or 2,3-pentanedione (100-360 ppm). Reactivity to MCh was not markedly changed after diacetyl, but was modestly decreased after 2,3-pentanedione inhalation. Inhaled diacetyl exerted essentially no effect on reactivity to mucosally applied MCh, but 2,3-pentanedione (320 and 360 ppm) increased reactivity to MCh in the isolated, perfused trachea preparation (IPT). In IPT, diacetyl and 2,3-pentanedione (≥3 mM) applied to the serosal and mucosal surfaces of intact and epithelium-denuded tracheas initiated transient contractions followed by relaxations. Inhaled acetoin (150 ppm) exerted no effect on pulmonary function and airway reactivity in vivo; acetic acid (27 ppm) produced hyperreactivity to MCh; and exposure to diacetyl + acetoin + acetic acid (250 + 150 + 27 ppm) led to a diacetyl-like reduction in reactivity. Data suggest that the effects of 2,3-pentanedione on airway reactivity are greater than those of diacetyl, and that flavorings are airway smooth muscle relaxants and constrictors, thus indicating a complex mechanism.


Assuntos
Hiper-Reatividade Brônquica/induzido quimicamente , Diacetil/toxicidade , Aromatizantes/toxicidade , Pentanonas/toxicidade , Traqueia/efeitos dos fármacos , Ácido Acético/toxicidade , Acetoína/toxicidade , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Hiper-Reatividade Brônquica/fisiopatologia , Testes de Provocação Brônquica , Células Cultivadas , Misturas Complexas/toxicidade , Alimentos , Exposição por Inalação , Masculino , Cloreto de Metacolina , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traqueia/fisiopatologia
10.
Invest Ophthalmol Vis Sci ; 54(5): 3215-23, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23599324

RESUMO

PURPOSE: Mutations in ZEB1 have been reported in posterior polymorphous corneal dystrophy (PPCD3; MIM #609141) and Fuchs' endothelial corneal dystrophy (FECD6; MIM #613270). Although PPCD and keratoconus are clinically and pathologically distinct, PPCD has been associated with keratoconus, suggesting a common genetic basis. The purpose of our study was to perform mutational screening of the ZEB1 gene in patients affected with keratoconus or PPCD. METHODS: Sanger sequencing of ZEB1 was performed in 70 unrelated patients with keratoconus and 18 unrelated patients with PPCD. Real-time quantitative PCR (RT-qPCR) was performed on RNA from cultured corneal keratocytes obtained from a keratoconic patient harboring a missense ZEB1 mutation (p.Gln640His) undergoing corneal transplantation. RESULTS: Mutational analysis of ZEB1 in PPCD identified a previously reported frameshift mutation (C.1578_1579INSG) and a novel nonsense mutation (C.2249C A) in exon 7 of ZEB1 causing the insertion of a stop codon: p.Ser750X. In the keratoconus cohort, a novel heterozygous pathogenic mutation in exon 7 (c.1920G > T; p.Gln640His) of ZEB1 was identified in a family affected with keratoconus and Fuchs' endothelial corneal dystrophy. RT-qPCR performed on cultured corneal keratocytes harboring the missense ZEB1 mutation (p.Gln640His) demonstrated that COL4A1 and COL4A2 were markedly downregulated, and COL4A3, COL4A4, and COL8A2 were moderately downregulated. CONCLUSIONS: Our data combined with the previously reported mutational spectrum of ZEB1 support a genotypephenotype correlation: missense substitutions in the ZEB1 protein are associated with FECD6 and keratoconus, whereas protein truncating ZEB1 mutations result in PPCD3. The dysregulation of α-type IV collagens represents a common link between ZEB1 mutation and the clinical phenotypes (PPCD3, FECD, and keratoconus).


Assuntos
Distrofias Hereditárias da Córnea/genética , Distrofia Endotelial de Fuchs/genética , Proteínas de Homeodomínio/genética , Ceratocone/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Adulto , Sequência de Bases , Células Cultivadas , Colágeno Tipo IV/genética , Colágeno Tipo VIII/genética , Distrofias Hereditárias da Córnea/cirurgia , Ceratócitos da Córnea/metabolismo , Topografia da Córnea , Transplante de Córnea , Análise Mutacional de DNA , Feminino , Distrofia Endotelial de Fuchs/cirurgia , Estudos de Associação Genética , Humanos , Ceratocone/cirurgia , Masculino , Dados de Sequência Molecular , Linhagem , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Dedos de Zinco/genética
11.
Toxicol Pathol ; 41(2): 395-409, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23389777

RESUMO

Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.


Assuntos
Nanotecnologia , Patologia , Toxicologia , Animais , Humanos
12.
Nanotoxicology ; 7(7): 1179-94, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22881873

RESUMO

This study investigated the in vivo pulmonary toxicity of inhaled multi-walled carbon nanotubes (MWCNT). Mice-inhaled aerosolized MWCNT (10 mg/m³, 5 h/day) for 2, 4, 8 or 12 days. MWCNT lung burden was linearly related to exposure duration. MWCNT-induced pulmonary inflammation was assessed by determining whole lung lavage (WLL) polymorphonuclear leukocytes (PMN). Lung cytotoxicity was assessed by WLL fluid LDH activities. WLL fluid albumin concentrations were determined as a marker of alveolar air-blood barrier integrity. These parameters significantly increased in MWCNT-exposed mice versus controls and were dose-dependent. Histopathologic alterations identified in the lung included (1) bronciolocentric inflammation, (2) bronchiolar epithelial hyperplasia and hypertrophy, (3) fibrosis, (4) vascular changes and (5) rare pleural penetration. MWCNT translocated to the lymph node where the deep paracortex was expanded after 8 or 12 days. Acute inhalation of MWCNT induced dose-dependent pulmonary inflammation and damage with rapid development of pulmonary fibrosis, and also demonstrated that MWCNT can reach the pleura after inhalation exposure.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/patologia , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/patologia , Aerossóis , Albuminas/análise , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Espectroscopia de Ressonância de Spin Eletrônica , Fibrose , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/química , Neutrófilos/efeitos dos fármacos , Tamanho da Partícula , Propriedades de Superfície
14.
Int J Mol Sci ; 13(11): 13781-803, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23203034

RESUMO

Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24-168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.


Assuntos
Vasos Coronários/patologia , Endotélio Vascular/patologia , Nanotubos de Carbono/toxicidade , Acetilcolina/farmacologia , Administração por Inalação , Animais , Pressão Arterial/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/metabolismo , Dilatação Patológica , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Coração/anatomia & histologia , Coração/efeitos dos fármacos , Rim/patologia , Fígado/patologia , Pulmão/patologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Nitroprussiato/farmacologia , Tamanho do Órgão , Fenilefrina/farmacologia , Pneumonia/etiologia , Pneumonia/patologia , Ratos , Fatores de Tempo
15.
Inhal Toxicol ; 24(12): 798-820, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23033994

RESUMO

This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT's, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008-0.10 particles per µm² filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT's, resuspended at a concentration of 10 mg/m³, contained 2.7 × 104 particles/cm³. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm³. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm³, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Nanotubos de Carbono/química , Material Particulado/química , Aerossóis , Filtros de Ar , Algoritmos , Animais , Câmaras de Exposição Atmosférica , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanofibras/análise , Nanofibras/química , Nanofibras/ultraestrutura , Nanotubos de Carbono/análise , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Material Particulado/análise , Estatística como Assunto , Propriedades de Superfície , Local de Trabalho
16.
Am J Pathol ; 181(3): 829-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22894831

RESUMO

Flavorings-related lung disease is a potentially disabling disease of food industry workers associated with exposure to the α-diketone butter flavoring, diacetyl (2,3-butanedione). To investigate the hypothesis that another α-diketone flavoring, 2,3-pentanedione, would cause airway damage, rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm), or diacetyl (240 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis comparable to diacetyl-induced injury. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. We conclude that 2,3-pentanedione is a respiratory hazard that can also alter gene expression in the brain.


Assuntos
Bulbo Olfatório/patologia , Pentanonas/administração & dosagem , Pentanonas/toxicidade , Sistema Respiratório/patologia , Administração por Inalação , Animais , Caderinas/metabolismo , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Diacetil/toxicidade , Epitélio/efeitos dos fármacos , Epitélio/patologia , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Bulbo Olfatório/efeitos dos fármacos , Proteína de Marcador Olfatório/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Coloração e Rotulagem , Desidrogenase do Álcool de Açúcar/metabolismo , Fatores de Tempo
17.
Part Fibre Toxicol ; 9: 25, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22776377

RESUMO

BACKGROUND: Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc - stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. RESULTS: The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and ß and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. CONCLUSION: This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.


Assuntos
Exposição por Inalação/efeitos adversos , Interferon Tipo I/sangue , Material Particulado/toxicidade , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Soldagem , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/metabolismo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Análise por Conglomerados , Interpretação Estatística de Dados , Exposição por Inalação/análise , Fator Regulador 7 de Interferon/genética , Interferon Tipo I/genética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Reconhecimento de Padrão/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos
18.
Acta Ophthalmol ; 90(6): e482-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22682160

RESUMO

PURPOSE: To describe the concordance of keratoconus in 18 sets of twins. METHODS: Thirteen monozygotic (MZ) and five dizygotic (DZ) pairs of twins were identified during an investigation of familial keratoconus. We used 16 forensic microsatellite markers to confirm the zygosity of same sex twins. Patients and available relatives were examined for signs of keratoconus using corneal topography. For each pair of twins, the severity of keratoconus in each eye was graded according to the steepest keratometry value and the average difference in score between the MZ and DZ twins compared. RESULTS: All of the MZ twins and four of the five DZ twins were concordant for keratoconus but with differences in age of onset and severity of disease. The subjective age of onset of keratoconus tended to be earlier in the MZ twins (16.4 years, SD 4.66) than in the DZ twins (20.3 years, SD 7.55) (p=0.086). Additional relatives with keratoconus were identified in two (16%) of the families with MZ twins and in three (60%) of the families of DZ twins. The mean difference in severity scores was 1.4 (SD 1.73) for the MZ twins and 3.0 (SD 1.00) for the DZ twins (p=0.035). CONCLUSION: This data provide evidence that the severity of keratoconus is more concordant in MZ than in DZ twins. The results support the currently accepted hypothesis of an important genetic contribution towards the pathogenesis of keratoconus, but suggest that there is also an environmental effect on the expression of disease.


Assuntos
Doenças em Gêmeos/genética , Ceratocone/genética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adolescente , Adulto , Criança , Topografia da Córnea , Feminino , Marcadores Genéticos , Genótipo , Técnicas de Genotipagem , Humanos , Ceratocone/diagnóstico , Masculino , Repetições de Microssatélites , Fenótipo , Adulto Jovem
19.
Nanotoxicology ; 6(7): 724-35, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21830860

RESUMO

The widespread increase in the production and use of nanomaterials has increased the potential for nanoparticle exposure; however, the biological effects of nanoparticle inhalation are poorly understood. Rats were exposed to nanosized titanium dioxide aerosols (10 µg lung burden); at 24 h post-exposure, the spinotrapezius muscle was prepared for intravital microscopy. Nanoparticle exposure did not alter perivascular nerve stimulation (PVNS)-induced arteriolar constriction under normal conditions; however, adrenergic receptor inhibition revealed a more robust effect. Nanoparticle inhalation reduced arteriolar dilation in response to active hyperaemia (AH). In both PVNS and AH experiments, nitric oxide synthase (NOS) inhibition affected only controls. Whereas cyclooxygenase (COX) inhibition only attenuated AH-induced arteriolar dilation in nanoparticle-exposed animals. This group displayed an enhanced U46619 constriction and attenuated iloprost-induced dilation. Collectively, these studies indicate that nanoparticle exposure reduces microvascular NO bioavailability and alters COX-mediated vasoreactivity. Furthermore, the enhanced adrenergic receptor sensitivity suggests an augmented sympathetic responsiveness.


Assuntos
Arteríolas/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/toxicidade , Prostaglandina-Endoperóxido Sintases/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Administração por Inalação , Animais , Arteríolas/anatomia & histologia , Inibidores de Ciclo-Oxigenase/farmacologia , Hiperemia/fisiopatologia , Masculino , Óxido Nítrico/administração & dosagem , Óxido Nítrico/toxicidade , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais/efeitos dos fármacos , Titânio/administração & dosagem , Titânio/toxicidade , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
20.
J Toxicol Environ Health A ; 74(21): 1381-96, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21916744

RESUMO

COREXIT EC9500A (COREXIT) was used to disperse crude oil during the 2010 Deepwater Horizon oil spill. While the environmental impact of COREXIT has been examined, the pulmonary effects are unknown. Investigations were undertaken to determine whether inhaled COREXIT elicits airway inflammation, alters pulmonary function or airway reactivity, or exerts pharmacological effects. Male rats were exposed to COREXIT (mean 27 mg/m(3), 5 h). Bronchoalveolar lavage was performed on d 1 and 7 postexposure. Lactate dehydrogenase (LDH) and albumin were measured as indices of lung injury; macrophages, neutrophils, lymphocytes, and eosinophils were quantified to evaluate inflammation; and oxidant production by macrophages and neutrophils was measured. There were no significant effects of COREXIT on LDH, albumin, inflammatory cell levels or oxidant production at either time point. In conscious animals, neither breathing frequency nor specific airway resistance were altered at 1 hr, 1 d and 7 d postexposure. Airway resistance responses to methacholine (MCh) aerosol in anesthetized animals were unaffected at 1 and 7 d postexposure, while dynamic compliance responses were decreased after 1 d but not 7 d. In tracheal strips, in the presence or absence of MCh, low concentrations of COREXIT (0.001% v/v) elicited relaxation; contraction occurred at 0.003-0.1% v/v. In isolated, perfused trachea, intraluminally applied COREXIT produced similar effects but at higher concentrations. COREXIT inhibited neurogenic contractile responses of strips to electrical field stimulation. Our findings suggest that COREXIT inhalation did not initiate lung inflammation, but may transiently increase the difficulty of breathing.


Assuntos
Emulsificantes/toxicidade , Recuperação e Remediação Ambiental/efeitos adversos , Exposição por Inalação/efeitos adversos , Lipídeos/toxicidade , Pneumonia/induzido quimicamente , Resistência das Vias Respiratórias/efeitos dos fármacos , Albuminas/metabolismo , Animais , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Lactato Desidrogenases/metabolismo , Medições Luminescentes , Masculino , Poluição por Petróleo , Pneumonia/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Testes de Função Respiratória , Testes de Toxicidade Aguda , Traqueia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA