RESUMO
The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2'-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U-A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.
Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , RNA Ribossômico , Ribossomos , Humanos , RNA Ribossômico/metabolismo , RNA Ribossômico/química , Ribossomos/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Conformação de Ácido Nucleico , Zinco/metabolismo , Zinco/química , Metilação , Magnésio/metabolismo , Magnésio/química , Pseudouridina/metabolismo , Pseudouridina/químicaRESUMO
Recent advances in cryo electron microscopy (cryo-EM) and image processing provide new opportunities to analyse drug targets at high resolution. However, structural heterogeneity limits resolution in many practical cases, hence restricting the level at which structural details can be analysed and drug design be performed. As structural disorder is not spread throughout the entire structure of a given macromolecular complex but instead is found in certain regions that move with respect to others and covering molecular scales from domain conformational changes up to the level of side chain conformations in ligand binding pockets, it is possible to focus the attention on those regions and the associated relative movements. Here we show how the usage of focused classifications and refinements provide insights into global conformational arrangements, exemplified on the human ribosome and on the cannabinoid G protein coupled receptor (GPCR), and how they can improve the local map resolution from an essentially disordered region to the 3-4 Å and finally to the 2 Å resolution range. A systematic analysis with variable spherical masks during focused refinement is presented showing that the choice of an optimal mask size helps refining to high resolution. This study covers several practical approaches on 4 examples illustrating how important mask size & shape and including neighbouring structural elements are for a focused analysis of a macromolecular complex. Such methods will be crucial for cryo-EM structure-based drug design of various medical targets and are applicable to single particle cryo-EM and electron tomography data.
Assuntos
Processamento de Imagem Assistida por Computador , Ribossomos , Humanos , Microscopia Crioeletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Ribossomos/química , Conformação Molecular , Desenho de FármacosRESUMO
This article presents an original approach for extracting atomic-resolution landscapes of continuous conformational variability of biomolecular complexes from cryo electron microscopy (cryo-EM) single particle images. This approach is based on a new 3D-to-2D flexible fitting method, which uses molecular dynamics (MD) simulation and is embedded in an iterative conformational-landscape refinement scheme. This new approach is referred to as MDSPACE, which stands for Molecular Dynamics simulation for Single Particle Analysis of Continuous Conformational hEterogeneity. The article describes the MDSPACE approach and shows its performance using synthetic and experimental datasets.
Assuntos
Simulação de Dinâmica Molecular , Imagem Individual de Molécula , Microscopia Crioeletrônica/métodos , Conformação ProteicaRESUMO
Recent technological advances in cryo electron microscopy (cryo-EM) have led to new opportunities in the structural biology field. Here we benchmark the performance of two 300 kV latest-generation cryo electron microscopes, Titan Krios G4 from Thermofisher Scientific and CRYO ARM 300 from Jeol, with regards to achieving high resolution single particle reconstructions on a real case sample. We compare potentially limiting factors such as drift rates, astigmatism & coma aberrations and performance during image processing and show that both microscopes, while comprising rather different technical setups & parameter settings and equipped with different types of energy filters & cameras, achieve a resolution of around 2 Å on the human ribosome, a non-symmetric object which constitutes a key drug target. Astigmatism correction, CTF refinement and correction of higher order aberrations through refinement in separate optics groups helped to account for astigmatism/coma caused by beam tilting during multi-spot and multi-hole acquisition in neighbouring holes without stage movement. The obtained maps resolve Mg2+ ions, water molecules, inhibitors and side-chains including chemical modifications. The fact that both instruments can resolve such detailed features will greatly facilitate understanding molecular mechanisms of various targets and helps in cryo-EM structure based drug design. The methods and analysis tools used here will be useful also to characterize existing instruments and optimize data acquisition settings and are applicable broadly to other drug targets in structural biology.
Assuntos
Astigmatismo , Humanos , Microscopia Crioeletrônica/métodos , Coma , Elétrons , Ribossomos/químicaRESUMO
The human 80S ribosome is the cellular nucleoprotein nanomachine in charge of protein synthesis that is profoundly affected during cancer transformation by oncogenic proteins and provides cancerous proliferating cells with proteins and therefore biomass. Indeed, cancer is associated with an increase in ribosome biogenesis and mutations in several ribosomal proteins genes are found in ribosomopathies, which are congenital diseases that display an elevated risk of cancer. Ribosomes and their biogenesis therefore represent attractive anti-cancer targets and several strategies are being developed to identify efficient and specific drugs. Homoharringtonine (HHT) is the only direct ribosome inhibitor currently used in clinics for cancer treatments, although many classical chemotherapeutic drugs also appear to impact on protein synthesis. Here we review the role of the human ribosome as a medical target in cancer, and how functional and structural analysis combined with chemical synthesis of new inhibitors can synergize. The possible existence of oncoribosomes is also discussed. The emerging idea is that targeting the human ribosome could not only allow the interference with cancer cell addiction towards protein synthesis and possibly induce their death but may also be highly valuable to decrease the levels of oncogenic proteins that display a high turnover rate (MYC, MCL1). Cryo-electron microscopy (cryo-EM) is an advanced method that allows the visualization of human ribosome complexes with factors and bound inhibitors to improve our understanding of their functioning mechanisms mode. Cryo-EM structures could greatly assist the foundation phase of a novel drug-design strategy. One goal would be to identify new specific and active molecules targeting the ribosome in cancer such as derivatives of cycloheximide, a well-known ribosome inhibitor.