Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem Pharmacol ; : 116187, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561090

RESUMO

Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid ß-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.

2.
Handb Exp Pharmacol ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418669

RESUMO

Chronic airway inflammatory diseases like asthma, chronic obstructive pulmonary disease (COPD), and their associated exacerbations cause significant socioeconomic burden. There are still major obstacles to effective therapy for controlling severe asthma and COPD progression. Advances in understanding the pathogenesis of the two diseases at the cellular and molecular levels are essential for the development of novel therapies. In recent years, significant efforts have been made to identify natural products as potential drug leads for treatment of human diseases and to investigate their efficacy, safety, and underlying mechanisms of action. Many major active components from various natural products have been extracted, isolated, and evaluated for their pharmacological efficacy and safety. For the treatment of asthma and COPD, many promising natural products have been discovered and extensively investigated. In this chapter, we will review a range of natural compounds from different chemical classes, including terpenes, polyphenols, alkaloids, fatty acids, polyketides, and vitamin E, that have been demonstrated effective against asthma and/or COPD and their exacerbations in preclinical models and clinical trials. We will also elaborate in detail their underlying mechanisms of action unraveled by these studies and discuss new opportunities and potential challenges for these natural products in managing asthma and COPD.

3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046017

RESUMO

Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/patologia , Macrófagos Alveolares/metabolismo , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático/fisiologia , Feminino , Homeostase , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Pulmão/metabolismo , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/fisiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos , Fumar/efeitos adversos , Nicotiana/efeitos adversos
4.
Biochem Biophys Res Commun ; 304(2): 417-24, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12711332

RESUMO

CC chemokine receptor 1 (CCR1) has been implicated in inflammation. The present study examined the signaling mechanisms that mediate GM-CSF/IL-10-induced synergistic CCR1 protein expression in monocytic U937 cells. GM-CSF alone markedly increased both the mRNA and protein expression of CCR1. IL-10 augmented GM-CSF-induced CCR1 protein expression with no effect on mRNA expression. PD098059 and U0126 (two MEK inhibitors), and LY294002 (a PI3K inhibitor) inhibited GM-CSF/IL-10-induced CCR1 gene and protein expression. PD098059, U0126, and LY294002 also attenuated chemotaxis of GM-CSF/IL-10-primed U937 cells in response to MIP-1alpha. Immunoblotting studies show that GM-CSF alone induced ERK2 phosphorylation; whereas, IL-10 alone induced p70(S6k) phosphorylation in U937 cells. Neither cytokine when used alone induced PKB/Akt phosphorylation. Combined GM-CSF/IL-10 treatment of U937 cells induced phosphorylation of ERK2, p70(S6k), and PKB/Akt. PD098059 and U0126 completely abrogated ERK2 phosphorylation; whereas, LY294002 completely blocked PKB/Akt and p70(S6k) phosphorylation. Our findings indicate that IL-10 may potentiate GM-CSF-induced CCR1 protein expression in U937 cells via activation of PKB/Akt and p70(S6k).


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-10/farmacologia , Monócitos/imunologia , Proteínas Serina-Treonina Quinases , Receptores de Quimiocinas/biossíntese , Quimiocina CCL3 , Quimiocina CCL4 , Quimiotaxia de Leucócito , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Humanos , Proteínas Inflamatórias de Macrófagos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro/biossíntese , Receptores CCR1 , Receptores de Quimiocinas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células U937
5.
Am J Respir Crit Care Med ; 162(1): 126-33, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10903231

RESUMO

Activation of nontransmembrane protein tyrosine kinases (PTKs), phosphatidylinositol 3-kinase (PI3K), and mitogen-activated protein kinase (MAPK) has been shown to be responsible for high-affinity Fc receptor (Fcepsilon RI)-mediated mast cell degranulation. Effects of inhibitors of the PTK signaling cascade on ovalbumin (OA)-induced anaphylactic contraction of isolated guinea-pig bronchi and release of histamine and peptidoleukotrienes from chopped lung preparations were studied. Genistein (30 microM) and tyrphostin 47 (50 microM), two PTK inhibitors, as well as LY294002 (10 microM), a selective PI3K inhibitor, significantly reduced (p < 0.05) peak anaphylactic bronchial contraction and facilitated relaxation of the contracted bronchi. PD 098059 (30 microM), a selective MAPK kinase inhibitor, failed to suppress OA-induced peak bronchial contraction, but facilitated the relaxation of the contracted bronchi (p < 0.05). At the same concentrations, none of these inhibitors showed any inhibitory effects on histamine-, leukotriene D(4) (LTD(4))- or KCl-induced bronchial contraction. On the other hand, these inhibitors significantly prevented (p < 0.05) OA-induced release of both histamine and peptidoleukotrienes from chopped lung preparations. In addition, combined PD 098059 and LY294002 treatment markedly (p < 0.05) suppressed the peak anaphylactic bronchial contraction and facilitated relaxation of the contracted bronchi. The combination of these two inhibitors further inhibited the release of peptidoleukotrienes from chopped lung preparations. Taken together, our data show that inhibition of tyrosine kinase signaling cascade can markedly attenuate anaphylactic contraction of airways, probably via inhibition of mast cell degranulation, and that inhibitors of this signaling cascade may have therapeutic potential for the treatment of asthma.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/imunologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antígenos/imunologia , Broncoconstrição/efeitos dos fármacos , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Cobaias , Técnicas In Vitro , Masculino , Morfolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA