Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cell Death Dis ; 15(5): 324, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724533

RESUMO

Severe aplastic anemia (SAA) is a rare, fatal disease characterized by severe cytopenias and loss of hematopoietic stem cells (HSCs). Immune-mediated destruction and inflammation are known drivers of SAA, however, the underlying mechanisms driving persistent inflammation are unknown. Current treatments for SAA rely on immunosuppressive therapies or HSC transplantation, however, these treatments are not always effective. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and impaired efferocytosis in SAA mice, relative to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.


Assuntos
Anemia Aplástica , Antígeno CD47 , Ácido Eicosapentaenoico , Animais , Anemia Aplástica/patologia , Camundongos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Antígeno CD47/metabolismo , Antígeno CD47/genética , Apoptose/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Inflamação/patologia , Masculino , Eferocitose
2.
FASEB J ; 38(6): e23555, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498346

RESUMO

Dysregulated inflammation-resolution programs are associated with atherosclerosis progression. Resolvins, in part, mediate inflammation-resolution programs. Indeed, Resolvin D2 (RvD2) activates GPR18, a G-protein-coupled receptor, and limits plaque progression, though the cellular targets of RvD2 remain unknown. Here, we developed a humanized GPR18 floxed ("fl/fl") and a myeloid (Lysozyme M Cre) GPR18 knockout (mKO) mouse. We functionally validated this model by assessing efferocytosis in bone marrow-derived macrophages (BMDMs) and found that RvD2 enhanced efferocytosis in the fl/fl, but not in the mKO BMDMs. To understand the functions of RvD2-GPR18 in atherosclerosis, we performed a bone marrow transfer of fl/fl or mKO bone marrow into Ldlr-/- recipients. For these experiments, we treated each genotype with either Vehicle/PBS or RvD2 (25 ng/mouse, 3 times/week for 3 weeks). Myeloid loss of GPR18 resulted in significantly more necrosis, increased cleaved caspase-3+ cells and decreased percentage of Arginase-1+ -Mac2+ cells without a change in overall Mac2+ plaque macrophages, compared with fl/fl➔Ldlr-/- transplanted mice. RvD2 treatment decreased plaque necrosis, the percent of cleaved caspase-3+ cells and increased the percent of Arginase-1+ -Mac2+ cells in fl/fl➔Ldlr-/- mice, but not in the mKO➔Ldlr-/- transplanted mice. These results suggest that GPR18 plays a causal role in limiting atherosclerosis progression and that RvD2's ability to limit plaque necrosis is in part dependent on myeloid GRP18.


Assuntos
Arginase , Aterosclerose , Ácidos Docosa-Hexaenoicos , Camundongos , Animais , Caspase 3 , Macrófagos , Inflamação , Aterosclerose/genética , Necrose , Receptores Acoplados a Proteínas G/genética
3.
Nat Rev Cardiol ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216693

RESUMO

Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.

4.
Immunol Rev ; 319(1): 151-157, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37787174

RESUMO

The failure to resolve inflammation underpins to several prevalent diseases, like atherosclerosis, and so identifying ways to boost resolution is unmet clinical needs. The resolution of inflammation is governed by several factors such as specialized pro-resolving mediators (SPMs) that counter-regulate pro-inflammatory pathways and promote tissue repair without compromising host defense. A major function of nearly all SPMs is to enhance the clearance of dead cells or efferocytosis. As such, phagocytes, such as macrophages, are essential cellular players in the resolution of inflammation because of their ability to rapidly and efficiently clear dead cells. This review highlights the role of SPMs in the clearance of apoptotic and necroptotic cells and offers insights into how targeting efferocytosis may provide new treatments for non-resolving diseases, like atherosclerosis.


Assuntos
Aterosclerose , Inflamação , Humanos , Inflamação/metabolismo , Fagocitose , Macrófagos/metabolismo , Mediadores da Inflamação/metabolismo
5.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37905094

RESUMO

Background­: Type 2 diabetes is associated with an increased risk of atherosclerotic cardiovascular disease. It has been suggested that insulin resistance underlies this link, possibly by altering the functions of cells in the artery wall. We aimed to test whether improving systemic insulin sensitivity reduces atherosclerosis. Methods­: We used mice that are established to have improved systemic insulin sensitivity: those lacking FoxO transcription factors in hepatocytes. Three hepatic FoxO isoforms (FoxO1, FoxO3, and FoxO4) function together to promote hepatic glucose output, and ablating them lowers glucose production, lowers circulating glucose and insulin, and improves systemic insulin sensitivity. We made these mice susceptible to atherosclerosis in two different ways, by injecting them with gain-of-function AAV8.mPcsk9D377Y and by crossing with Ldlr-/- mice. Results­: We verified that hepatic FoxO ablation improves systemic insulin sensitivity in these atherosclerotic settings. We observed that FoxO deficiency caused no reductions in atherosclerosis, and in some cases increased atherosclerosis. These phenotypes coincided with large increases in circulating triglycerides in FoxO-ablated mice. Conclusions­: These findings suggest that systemic insulin sensitization is insufficient to reduce atherosclerosis.

6.
Am J Pathol ; 193(12): 1953-1968, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37717941

RESUMO

Aging is associated with nonresolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a proresolving ligand that acts through the G-protein-coupled receptor called GPR18. Unbiased RNA sequencing revealed increased Gpr18 expression in macrophages from old mice, and in livers from elderly humans, which was associated with increased steatosis and fibrosis in middle-aged (MA) and old mice. MA mice that lacked GPR18 on myeloid cells had exacerbated steatosis and hepatic fibrosis, which was associated with a decline in Mac2+ macrophages. Treatment of MA mice with RvD2 reduced steatosis and decreased hepatic fibrosis, correlating with increased Mac2+ macrophages, increased monocyte-derived macrophages, and elevated numbers of monocytes in the liver, blood, and bone marrow. RvD2 acted directly on the bone marrow to increase monocyte-macrophage progenitors. A transplantation assay further demonstrated that bone marrow from old mice facilitated hepatic collagen accumulation in young mice. Transient RvD2 treatment to mice transplanted with bone marrow from old mice prevented hepatic collagen accumulation. Together, this study demonstrates that RvD2-GPR18 signaling controls steatosis and fibrosis and provides a mechanistic-based therapy for promoting liver repair in aging.


Assuntos
Medula Óssea , Fígado Gorduroso , Pessoa de Meia-Idade , Humanos , Camundongos , Animais , Idoso , Medula Óssea/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento , Cirrose Hepática , Fibrose , Colágeno/genética , Camundongos Endogâmicos C57BL
7.
Adv Pharmacol ; 97: 257-281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37236761

RESUMO

Non-resolving inflammation is an underpinning of cardiovascular diseases including atherosclerosis. The resolution of inflammation is an active and highly coordinated process that involves the generation of specialized pro-resolving mediators (SPMs), and other factors including proteins, gases, and nucleotides. SPMs comprise a superfamily of lipid mediators that includes lipoxins, resolvins, maresins and protectins. SPMs act through distinct G protein-coupled receptors (GPCRs) and have been extensively studied in animal models of cardiovascular diseases. An emerging body of literature suggests that SPMs have protective roles in atherosclerosis as demonstrated using specific SPM as well as mice deficient in their receptors. This review will highlight a relatively new pro-resolving signaling axis, namely Resolvin D2-GPR18, and how understanding detailed mechanisms and cellular specificity of this signaling axis may help inform the development of more targeted pro-resolution therapies for atherosclerosis and related cardiovascular pathologies.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Camundongos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Aterosclerose/tratamento farmacológico , Fenômenos Fisiológicos Cardiovasculares , Receptores Acoplados a Proteínas G
8.
Biol Sex Differ ; 14(1): 31, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208759

RESUMO

BACKGROUND: Damage to the cerebral vasculature can lead to vascular contributions to cognitive impairment and dementia (VCID). A reduction in blood flow to the brain leads to neuropathology, including neuroinflammation and white matter lesions that are a hallmark of VCID. Mid-life metabolic disease (obesity, prediabetes, or diabetes) is a risk factor for VCID which may be sex-dependent (female bias). METHODS: We compared the effects of mid-life metabolic disease between males and females in a chronic cerebral hypoperfusion mouse model of VCID. C57BL/6J mice were fed a control or high fat (HF) diet starting at ~ 8.5 months of age. Three months after diet initiation, sham or unilateral carotid artery occlusion surgery (VCID model) was performed. Three months later, mice underwent behavior testing and brains were collected to assess pathology. RESULTS: We have previously shown that in this VCID model, HF diet causes greater metabolic impairment and a wider array of cognitive deficits in females compared to males. Here, we report on sex differences in the underlying neuropathology, specifically white matter changes and neuroinflammation in several areas of the brain. White matter was negatively impacted by VCID in males and HF diet in females, with greater metabolic impairment correlating with less myelin markers in females only. High fat diet led to an increase in microglia activation in males but not in females. Further, HF diet led to a decrease in proinflammatory cytokines and pro-resolving mediator mRNA expression in females but not males. CONCLUSIONS: The current study adds to our understanding of sex differences in underlying neuropathology of VCID in the presence of a common risk factor (obesity/prediabetes). This information is crucial for the development of effective, sex-specific therapeutic interventions for VCID.


Reduced blood flow to the brain resulting from damaged blood vessels can lead to vascular dementia. Neuroinflammation and white matter damage are characteristics of vascular dementia. Middle-age is a time when obesity and prediabetes can increase risk for vascular dementia. This increase in risk is greater for women. A high fat diet causes obesity and prediabetes in mice. We compared the effects of diet-induced obesity in middle-age between males and females in a mouse model of vascular dementia. We have previously shown that a high fat diet causes greater obesity and prediabetes and a wider array of learning and memory problems in females compared to males. Here, we report on sex differences in the damage to the brain. White matter was negatively impacted by vascular dementia in males and high fat diet in females, with more severe prediabetes correlating with less white matter markers in females only. High fat diet led to an increase in activation of microglia (immune cells in the brain) in males but not in females. High fat diet also led to a decrease in pro-inflammatory and pro-resolving mediators expression in females but not males. The current study adds to our understanding of sex differences in underlying damage to the brain caused by vascular dementia in the presence of common risk factors (obesity and prediabetes). This information is needed for the development of effective, sex-specific treatments for vascular dementia.


Assuntos
Disfunção Cognitiva , Demência Vascular , Estado Pré-Diabético , Feminino , Camundongos , Masculino , Animais , Dieta Hiperlipídica , Doenças Neuroinflamatórias , Caracteres Sexuais , Estado Pré-Diabético/complicações , Camundongos Endogâmicos C57BL , Demência Vascular/complicações , Demência Vascular/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Obesidade
9.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066358

RESUMO

Introduction/Objective: Dysregulated inflammation-resolution programs are associated with atherosclerosis progression. Inflammation-resolution is in part mediated by Resolvins, including Resolvin D2 (RvD2). RvD2, which activates a G-protein coupled receptor (GPCR) called GPR18, limits plaque progression. Cellular targets of RvD2 are not known. Approach and Results: Here we developed humanized GPR18 floxed ("fl/fl") and a myeloid (Lysozyme M Cre) GPR18 knockout (mKO) mouse. We functionally validated this model by assessing efferocytosis in bone marrow derived macrophages (BMDMs) and found that RvD2 enhanced efferocytosis in the fl/fl, but not in the mKO BMDMs. We employed two different models to evaluate the role of GPR18 in atherosclerosis. We first used the PCSK9-gain of function approach and found increased necrosis in the plaques of the mKO mice compared with fl/fl mice. Next, we performed a bone marrow transfer of fl/fl or mKO bone marrow into Ldlr -/- recipients. For these experiments, we treated each genotype with either Veh or RvD2 (25 ng/mouse, 3 times/week for 3 weeks). Myeloid loss of GPR18 resulted in significantly more necrosis and cleaved caspase-3 + cells compared with fl/fl transplanted mice. RvD2 treatment decreased plaques necrosis and cleaved caspase-3 + cells in fl/fl, but not in the mKO transplanted mice. Conclusions: These results are the first to suggest a causative role for endogenous RvD2 signaling on myeloid cells in limiting plaque necrosis. Moreover, these results provide a mechanistic basis for RvD2 as a therapy limiting plaque necrosis.

10.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36909559

RESUMO

Current treatments for severe aplastic anemia (SAA) rely on hematopoietic stem cell (HSC) transplantation and immunosuppressive therapies, however these treatments are not always effective. While immune-mediated destruction and inflammation are known drivers of SAA, the underlying mechanisms that lead to persistent inflammation are unknown. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and demonstrate impaired efferocytosis in SAA mice, as compared to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.

11.
bioRxiv ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36711905

RESUMO

Aging is associated with non-resolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a pro-resolving ligand that acts through the G-protein coupled receptor (GPCR) called GRP18. Using an unbiased screen, we report increased Gpr18 expression in macrophages from old mice and in livers from elderly humans that is associated with increased steatosis and fibrosis in middle-aged (MA) and old mice. MA mice that lack GPR18 on myeloid cells had exacerbated steatosis and hepatic fibrosis, which was associated with a decline in Mac2+ macrophages. Treatment of MA mice with RvD2 reduced steatosis and decreased hepatic fibrosis, correlating with increased Mac2+ macrophages, monocyte-derived macrophages and elevated numbers of monocytes in the liver, blood, and bone marrow. RvD2 acted directly upon the bone marrow to increase monocyte-macrophage progenitors. Using a transplantation assay we further demonstrated that bone marrow from old mice facilitated hepatic collagen accumulation in young mice, and transient RvD2 treatment to mice transplanted with bone marrow from old mice prevented hepatic collagen accumulation. Together, our study demonstrates that RvD2-GPR18 signaling controls steatosis and fibrosis and provides a mechanistic-based therapy for promoting liver repair in aging.

12.
Stem Cell Reports ; 16(12): 2887-2899, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34798063

RESUMO

Severe infection can dramatically alter blood production, but the mechanisms driving hematopoietic stem and progenitor cell (HSC/HSPC) loss have not been clearly defined. Using Ixodes ovatus Ehrlichia (IOE), a tick-borne pathogen that causes severe shock-like illness and bone marrow (BM) aplasia, type I and II interferons (IFNs) promoted loss of HSPCs via increased cell death and enforced quiescence. IFN-αß were required for increased interleukin 18 (IL-18) expression during infection, correlating with ST-HSC loss. IL-18 deficiency prevented BM aplasia and increased HSC/HSPCs. IL-18R signaling was intrinsically required for ST-HSC quiescence, but not for HSPC cell death. To elucidate cell death mechanisms, MLKL- or gasdermin D-deficient mice were infected; whereas Mlkl-/- mice exhibited protected HSC/HSPCs, no such protection was observed in Gsdmd-/- mice during infection. MLKL deficiency intrinsically protected HSCs during infection and improved hematopoietic output upon recovery. These studies define MLKL and IL-18R signaling in HSC loss and suppressed hematopoietic function in shock-like infection.


Assuntos
Infecções Bacterianas/complicações , Ciclo Celular , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Proteínas Quinases/metabolismo , Receptores de Interleucina-18/metabolismo , Choque/microbiologia , Choque/patologia , Animais , Bactérias/metabolismo , Medula Óssea/patologia , Morte Celular , Feminino , Interferons/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/deficiência , Choque/metabolismo , Transdução de Sinais
13.
Cardiovasc Res ; 117(13): 2563-2574, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34609505

RESUMO

The resolution of inflammation (or inflammation-resolution) is an active and highly coordinated process. Inflammation-resolution is governed by several endogenous factors, and specialized pro-resolving mediators (SPMs) are one such class of molecules that have robust biological function. Non-resolving inflammation is associated with a variety of human diseases, including atherosclerosis. Moreover, non-resolving inflammation is a hallmark of ageing, an inevitable process associated with increased risk for cardiovascular disease. Uncovering mechanisms as to why inflammation-resolution is impaired in ageing and in disease and identifying useful biomarkers for non-resolving inflammation are unmet needs. Recent work has pointed to a critical role for balanced ratios of SPMs and pro-inflammatory lipids (i.e. leucotrienes and/or specific prostaglandins) as a key determinant of timely inflammation resolution. This review will focus on the accumulating findings that support the role of non-resolving inflammation and imbalanced pro-resolving and pro-inflammatory mediators in atherosclerosis. We aim to provide insight as to why these imbalances occur, the importance of ageing in disease progression, and how haematopoietic function impacts inflammation-resolution and atherosclerosis. We highlight open questions regarding therapeutic strategies and mechanisms of disease to provide a framework for future studies that aim to tackle this important human disease.


Assuntos
Artérias/imunologia , Aterosclerose/imunologia , Sistema Imunitário/imunologia , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Animais , Anti-Inflamatórios/uso terapêutico , Artérias/efeitos dos fármacos , Artérias/metabolismo , Artérias/patologia , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Fármacos Cardiovasculares/uso terapêutico , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Placa Aterosclerótica , Transdução de Sinais
15.
J Immunol ; 207(7): 1812-1823, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34462312

RESUMO

Radiation is associated with tissue damage and increased risk of atherosclerosis, but there are currently no treatments and a very limited mechanistic understanding of how radiation impacts tissue repair mechanisms. We uncovered that radiation significantly delayed temporal resolution programs that were associated with decreased efferocytosis in vivo. Resolvin D1 (RvD1), a known proresolving ligand, promoted swift resolution and restored efferocytosis in sublethally irradiated mice. Irradiated macrophages exhibited several features of senescence, including increased expression of p16INK4A and p21, heightened levels of SA-ß-gal, COX-2, several proinflammatory cytokines/chemokines, and oxidative stress (OS) in vitro, and when transferred to mice, they exacerbated inflammation in vivo. Mechanistically, heightened OS in senescent macrophages led to impairment in their ability to carry out efficient efferocytosis, and treatment with RvD1 reduced OS and improved efferocytosis. Sublethally irradiated Ldlr -/- mice exhibited increased plaque necrosis, p16INK4A cells, and decreased lesional collagen compared with nonirradiated controls, and treatment with RvD1 significantly reduced necrosis and increased lesional collagen. Removal of p16INK4A hematopoietic cells during advanced atherosclerosis with p16-3MR mice reduced plaque necrosis and increased production of key intraplaque-resolving mediators. Our results demonstrate that sublethal radiation drives macrophage senescence and efferocytosis defects and suggest that RvD1 may be a new therapeutic strategy to limit radiation-induced tissue damage.


Assuntos
Aterosclerose/imunologia , Doenças Cardiovasculares/imunologia , Ácidos Docosa-Hexaenoicos/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Macrófagos/imunologia , Lesões por Radiação/imunologia , Cicatrização/efeitos da radiação , Animais , Aterosclerose/genética , Células Cultivadas , Senescência Celular , Ciclo-Oxigenase 2/metabolismo , Genes p16 , Humanos , Inflamação , Camundongos , Camundongos Knockout , Radiação
16.
Front Immunol ; 12: 660865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177900

RESUMO

The resolution of inflammation is a tissue protective program that is governed by several factors including specialized pro-resolving mediators (SPMs), proteins, gasses and nucleotides. Pro-resolving mediators activate counterregulatory programs to quell inflammation and promote tissue repair in a manner that does not compromise host defense. Phagocytes like neutrophils and macrophages play key roles in the resolution of inflammation because of their ability to remove debris, microbes and dead cells through processes including phagocytosis and efferocytosis. Emerging evidence suggests that failed resolution of inflammation and defective phagocytosis or efferocytosis underpins several prevalent human diseases. Therefore, understanding factors and mechanisms associated with enhancing these processes is a critical need. SPMs enhance phagocytosis and efferocytosis and this review will highlight mechanisms associated with their actions.


Assuntos
Inflamação , Ligantes , Fagócitos/imunologia , Fagocitose , Animais , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo
17.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138760

RESUMO

SOCS3 is the main inhibitor of the JAK/STAT3 pathway. This pathway is activated by interleukin 6 (IL-6), a major mediator of the cytokine storm during shock. To determine its role in the vascular response to shock, we challenged mice lacking SOCS3 in the adult endothelium (SOCS3iEKO) with a nonlethal dose of lipopolysaccharide (LPS). SOCS3iEKO mice died 16-24 hours postinjection after severe kidney failure. Loss of SOCS3 led to an LPS-induced type I IFN-like program and high expression of prothrombotic and proadhesive genes. Consistently, we observed intraluminal leukocyte adhesion and neutrophil extracellular trap-osis (NETosis), as well as retinal venular leukoembolization. Notably, heterozygous mice displayed an intermediate phenotype, suggesting a gene dose effect. In vitro studies were performed to study the role of SOCS3 protein levels in the regulation of the inflammatory response. In human umbilical vein endothelial cells, pulse-chase experiments showed that SOCS3 protein had a half-life less than 20 minutes. Inhibition of SOCS3 ubiquitination and proteasomal degradation led to protein accumulation and a stronger inhibition of IL-6 signaling and barrier function loss. Together, our data demonstrate that the regulation of SOCS3 protein levels is critical to inhibit IL-6-mediated endotheliopathy during shock and provide a promising therapeutic avenue to prevent multiorgan dysfunction through stabilization of endothelial SOCS3.


Assuntos
Endotélio Vascular/patologia , Endotoxemia/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Modelos Animais de Doenças , Endotoxemia/diagnóstico , Endotoxemia/mortalidade , Endotoxemia/patologia , Heterozigoto , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Proteólise , Índice de Gravidade de Doença , Proteína 3 Supressora da Sinalização de Citocinas/análise , Proteína 3 Supressora da Sinalização de Citocinas/genética , Ubiquitinação
18.
J Clin Invest ; 131(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33630758

RESUMO

Efferocytosis, the process through which apoptotic cells (ACs) are cleared through actin-mediated engulfment by macrophages, prevents secondary necrosis, suppresses inflammation, and promotes resolution. Impaired efferocytosis drives the formation of clinically dangerous necrotic atherosclerotic plaques, the underlying etiology of coronary artery disease (CAD). An intron of the gene encoding PHACTR1 contains rs9349379 (A>G), a common variant associated with CAD. As PHACTR1 is an actin-binding protein, we reasoned that if the rs9349379 risk allele G causes lower PHACTR1 expression in macrophages, it might link the risk allele to CAD via impaired efferocytosis. We show here that rs9349379-G/G was associated with lower levels of PHACTR1 and impaired efferocytosis in human monocyte-derived macrophages and human atherosclerotic lesional macrophages compared with rs9349379-A/A. Silencing PHACTR1 in human and mouse macrophages compromised AC engulfment, and Western diet-fed Ldlr-/- mice in which hematopoietic Phactr1 was genetically targeted showed impaired lesional efferocytosis, increased plaque necrosis, and thinner fibrous caps - all signs of vulnerable plaques in humans. Mechanistically, PHACTR1 prevented dephosphorylation of myosin light chain (MLC), which was necessary for AC engulfment. In summary, rs9349379-G lowered PHACTR1, which, by lowering phospho-MLC, compromised efferocytosis. Thus, rs9349379-G may contribute to CAD risk, at least in part, by impairing atherosclerotic lesional macrophage efferocytosis.


Assuntos
Apoptose , Doença da Artéria Coronariana , Macrófagos , Proteínas dos Microfilamentos/deficiência , Placa Aterosclerótica , Polimorfismo Genético , Animais , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Humanos , Células Jurkat , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fosforilação/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
19.
Arterioscler Thromb Vasc Biol ; 41(3): 1062-1075, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472399

RESUMO

OBJECTIVE: Plaque necrosis is a key feature of defective resolution in atherosclerosis. Recent evidence suggests that necroptosis promotes plaque necrosis; therefore, we sought to determine how necroptotic cells (NCs) impact resolution programs in plaques. Approach and Results: To investigate the role(s) of necroptosis in advanced atherosclerosis, we used mice deficient of Mlkl, an effector of necroptosis. Mlkl-/- mice that were injected with a gain-of-function mutant PCSK9 (AAV8-gof-PCSK9) and fed a Western diet for 16 weeks, showed significantly less plaque necrosis, increased fibrous caps and improved efferocytosis compared with AAV8-gof-PCSK9 injected wt controls. Additionally, hypercholesterolemic Mlkl-/- mice had a significant increase in proresolving mediators including resolvin D1 (RvD1) and a decrease in prostanoids including thromboxane in plaques and in vitro. We found that exuberant thromboxane released by NCs impaired the clearance of both apoptotic cells and NCs through disruption of oxidative phosphorylation in macrophages. Moreover, we found that NCs did not readily synthesize RvD1 and that exogenous administration of RvD1 to macrophages rescued NC-induced defective efferocytosis. RvD1 also enhanced the uptake of NCs via the activation of p-AMPK (AMP-activated protein kinase), increased fatty acid oxidation, and enhanced oxidative phosphorylation in macrophages. CONCLUSIONS: These results suggest that NCs derange resolution by limiting key SPMs and impairing the efferocytic repertoire of macrophages. Moreover, these findings provide a molecular mechanism for RvD1 in directing proresolving metabolic programs in macrophages and further suggests RvD1 as a potential therapeutic strategy to limit NCs in tissues. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Necroptose/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Feminino , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Fosforilação Oxidativa , Fagocitose , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Prostaglandinas/metabolismo , Proteínas Quinases/deficiência , Proteínas Quinases/genética
20.
Nat Nanotechnol ; 15(2): 84-85, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31988505
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA