Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Front Microbiol ; 14: 1139213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303779

RESUMO

Interactions between autotrophs and heterotrophs are central to carbon (C) exchange across trophic levels in essentially all ecosystems and metabolite exchange is a frequent mechanism for distributing C within spatially structured ecosystems. Yet, despite the importance of C exchange, the timescales at which fixed C is transferred in microbial communities is poorly understood. We employed a stable isotope tracer combined with spatially resolved isotope analysis to quantify photoautotrophic uptake of bicarbonate and track subsequent exchanges across a vertical depth gradient in a stratified microbial mat over a light-driven diel cycle. We observed that C mobility, both across the vertical strata and between taxa, was highest during periods of active photoautotrophy. Parallel experiments with 13C-labeled organic substrates (acetate and glucose) showed comparably less exchange of C within the mat. Metabolite analysis showed rapid incorporation of 13C into molecules that can both comprise a portion of the extracellular polymeric substances in the system and serve to transport C between photoautotrophs and heterotrophs. Stable isotope proteomic analysis revealed rapid C exchange between cyanobacterial and associated heterotrophic community members during the day with decreased exchange at night. We observed strong diel control on the spatial exchange of freshly fixed C within tightly interacting mat communities suggesting a rapid redistribution, both spatially and taxonomically, primarily during daylight periods.

2.
J Microbiol Biotechnol ; 31(11): 1519-1525, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34489371

RESUMO

Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 µM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.


Assuntos
Biodegradação Ambiental , Cellulomonas/metabolismo , Cromo/metabolismo , Compostos Férricos/metabolismo , Fermentação , Água Subterrânea/microbiologia , Filogenia , RNA Ribossômico 16S , República da Coreia
3.
Microbiol Resour Announc ; 10(13)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795341

RESUMO

We report the complete genome sequence of selenate [Se(VI)]-reducing Shigella sonnei SE6-1, which was isolated from stream sediment from an industrial complex in Jeonju, South Korea. The genome sequence is 4,762,774 bp long, with a G+C content of 50.7% and 4,548 genes, including 4,440 coding sequences, 22 rRNA genes, and 86 tRNA genes.

4.
Can J Microbiol ; 67(4): 332-341, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33136441

RESUMO

Hot Lake is a small heliothermal and hypersaline lake in far north-central Washington State (USA) and is limnologically unusual because MgSO4 rather than NaCl is the dominant salt. In late summer, the Hot Lake metalimnion becomes distinctly green from blooms of planktonic phototrophs. In a study undertaken over 60 years ago, these blooms were predicted to include green sulfur bacteria, but no cultures were obtained. We sampled Hot Lake and established enrichment cultures for phototrophic sulfur bacteria in MgSO4-rich sulfidic media. Most enrichments turned green or red within 2 weeks, and from green-colored enrichments, pure cultures of a lobed green sulfur bacterium (phylum Chlorobi) were isolated. Phylogenetic analyses showed the organism to be a species of the prosthecate green sulfur bacterium Prosthecochloris. Cultures of this Hot Lake phototroph were halophilic and tolerated high levels of sulfide and MgSO4. In addition, unlike all recognized species of Prosthecochloris, the Hot Lake isolates grew at temperatures up to 45 °C, indicating an adaptation to the warm summer temperatures of the lake. Photoautotrophy by Hot Lake green sulfur bacteria may contribute dissolved organic matter to anoxic zones of the lake, and their diazotrophic capacity may provide a key source of bioavailable nitrogen, as well.


Assuntos
Chlorobi/isolamento & purificação , Chlorobi/fisiologia , Lagos/microbiologia , Chlorobi/classificação , Temperatura Alta , Lagos/química , Sulfato de Magnésio/análise , Sulfato de Magnésio/metabolismo , Fixação de Nitrogênio , Processos Fototróficos , Filogenia , Estações do Ano , Sulfetos/análise , Sulfetos/metabolismo , Washington
5.
mSystems ; 5(3)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518194

RESUMO

Increasing anthropogenic inputs of fixed nitrogen are leading to greater eutrophication of aquatic environments, but it is unclear how this impacts the flux and fate of carbon in lacustrine and riverine systems. Here, we present evidence that the form of nitrogen governs the partitioning of carbon among members in a genome-sequenced, model phototrophic biofilm of 20 members. Consumption of NO3 - as the sole nitrogen source unexpectedly resulted in more rapid transfer of carbon to heterotrophs than when NH4 + was also provided, suggesting alterations in the form of carbon exchanged. The form of nitrogen dramatically impacted net community nitrogen, but not carbon, uptake rates. Furthermore, this alteration in nitrogen form caused very large but focused alterations to community structure, strongly impacting the abundance of only two species within the biofilm and modestly impacting a third member species. Our data suggest that nitrogen metabolism may coordinate coupled carbon-nitrogen biogeochemical cycling in benthic biofilms and, potentially, in phototroph-heterotroph consortia more broadly. It further indicates that the form of nitrogen inputs may significantly impact the contribution of these communities to carbon partitioning across the terrestrial-aquatic interface.IMPORTANCE Anthropogenic inputs of nitrogen into aquatic ecosystems, and especially those of agricultural origin, involve a mix of chemical species. Although it is well-known in general that nitrogen eutrophication markedly influences the metabolism of aquatic phototrophic communities, relatively little is known regarding whether the specific chemical form of nitrogen inputs matter. Our data suggest that the nitrogen form alters the rate of nitrogen uptake significantly, whereas corresponding alterations in carbon uptake were minor. However, differences imposed by uptake of divergent nitrogen forms may result in alterations among phototroph-heterotroph interactions that rewire community metabolism. Furthermore, our data hint that availability of other nutrients (i.e., iron) might mediate the linkage between carbon and nitrogen cycling in these communities. Taken together, our data suggest that different nitrogen forms should be examined for divergent impacts on phototrophic communities in fluvial systems and that these anthropogenic nitrogen inputs may significantly differ in their ultimate biogeochemical impacts.

6.
Nat Commun ; 9(1): 1034, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515121

RESUMO

The original version of this Article contained an error in Fig. 6e, in which the text in the legend was omitted. This has been corrected in both the PDF and HTML versions of the article.

7.
Nat Commun ; 9(1): 585, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422537

RESUMO

The hyporheic corridor (HC) encompasses the river-groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology-biochemistry-microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW-RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems.


Assuntos
Carbono/metabolismo , Água Subterrânea , Rios , Ciclo Hidrológico , Microbiologia da Água , Ecossistema , Água Doce/química , Água Doce/microbiologia , Água Subterrânea/química , Água Subterrânea/microbiologia , Rios/química , Rios/microbiologia
8.
Appl Environ Microbiol ; 84(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079618

RESUMO

Although biocatalytic transformation has shown great promise in chemical synthesis, there remain significant challenges in controlling high selectivity without the formation of undesirable by-products. For instance, few attempts to construct biocatalysts for de novo synthesis of pure flavin mononucleotide (FMN) have been successful, due to riboflavin (RF) accumulating in the cytoplasm and being secreted with FMN. To address this problem, we show here a novel biosynthesis strategy, compartmentalizing the final FMN biosynthesis step in the periplasm of an engineered Escherichia coli strain. This construct is able to overproduce FMN with high specificity (92.4% of total excreted flavins). Such a biosynthesis approach allows isolation of the final biosynthesis step from the cytoplasm to eliminate undesirable by-products, providing a new route to develop biocatalysts for the synthesis of high-purity chemicals.IMPORTANCE The periplasm of Gram-negative bacterial hosts is engineered to compartmentalize the final biosynthesis step from the cytoplasm. This strategy is promising for the overproduction of high-value products with high specificity. We demonstrate the successful implementation of this strategy in microbial production of highly pure FMN.


Assuntos
Biocatálise , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Periplasma/fisiologia
9.
FEMS Microbiol Ecol ; 93(10)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045626

RESUMO

Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle.


Assuntos
Bactérias/metabolismo , Lagos/microbiologia , Cloreto de Sódio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biomassa , Carbono/análise , Carbono/metabolismo , Ecossistema , Lagos/química , Microbiota , Cloreto de Sódio/análise
10.
Environ Microbiol Rep ; 9(5): 512-521, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28618201

RESUMO

Microbial enzymes catalytically drive biogeochemical processes in environments. The dynamic linkage between functional enzymes and biogeochemical species transformation has, however, rarely been investigated for decades because of the challenges to directly quantify enzymes in environmental samples. The diversity of microorganisms, the low amount of available biomass and the complexity of chemical composition in environmental samples represent the main challenges. To address the diversity challenge, we first identify several signature peptides that are conserved in the targeted enzymes with the same functionality across many phylogenetically diverse microorganisms using metagenome-based protein sequence data. Quantification of the signature peptides then allows estimation of the targeted enzyme abundance. To achieve analyses of the requisite sensitivity for complex environmental samples with low available biomass, we adapted a recently developed ultrasensitive targeted quantification technology, termed high-pressure high-resolution separations with intelligent selection and multiplexing (PRISM) by improving peptide separation efficiency and method detection sensitivity. Nitrate reduction dynamics catalyzed by dissimilatory and assimilatory enzymes in a hyporheic zone sediment was used as an example to demonstrate the application of the enzyme quantification approach. Together with the measurements of biogeochemical species, the approach enables investigating the dynamic linkage between functional enzymes and biogeochemical processes.


Assuntos
Fenômenos Bioquímicos , Biodegradação Ambiental , Biotransformação , Microbiologia Ambiental , Enzimas/química , Enzimas/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Espectrometria de Massas , Nitratos/metabolismo , Peptídeos/química , Reprodutibilidade dos Testes
11.
Front Microbiol ; 8: 1020, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659875

RESUMO

The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species' abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.

12.
Environ Sci Technol ; 51(9): 4877-4886, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28391700

RESUMO

Hyporheic zones (HZ) are active biogeochemical regions where groundwater and surface water mix. N transformations in HZ sediments were investigated in columns with a focus on understanding how the dynamic changes in groundwater and surface water mixing affect microbial community and its biogeochemical function with respect to N transformations. The results indicated that denitrification, DNRA, and nitrification rates and products changed quickly in response to changes in water and sediment chemistry, fluid residence time, and groundwater-surface water exchange. These changes were accompanied by the zonation of denitrification functional genes along a 30 cm advective flow path after a total of 6 days' elution of synthetic groundwater with fluid residence time >9.8 h. The shift of microbial functional potential toward denitrification was correlated with rapid NO3- reduction collectively affected by NO3- concentration and fluid residence time, and was resistant to short-term groundwater-surface water exchange on a daily basis. The results implied that variations in microbial functional potential and associated biogeochemical reactions in the HZ may occur at space scales where steep concentration gradients present along the flow path and the variations would respond to dynamic HZ water exchange over different time periods common to natural and managed riverine systems.


Assuntos
Nitrogênio , Água , Desnitrificação , Água Subterrânea , Hidrodinâmica
13.
Nat Commun ; 8: 13924, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067226

RESUMO

Microbial phototrophs, key primary producers on Earth, use H2O, H2, H2S and other reduced inorganic compounds as electron donors. Here we describe a form of metabolism linking anoxygenic photosynthesis to anaerobic respiration that we call 'syntrophic anaerobic photosynthesis'. We show that photoautotrophy in the green sulfur bacterium Prosthecochloris aestaurii can be driven by either electrons from a solid electrode or acetate oxidation via direct interspecies electron transfer from a heterotrophic partner bacterium, Geobacter sulfurreducens. Photosynthetic growth of P. aestuarii using reductant provided by either an electrode or syntrophy is robust and light-dependent. In contrast, P. aestuarii does not grow in co-culture with a G. sulfurreducens mutant lacking a trans-outer membrane porin-cytochrome protein complex required for direct intercellular electron transfer. Syntrophic anaerobic photosynthesis is therefore a carbon cycling process that could take place in anoxic environments. This process could be exploited for biotechnological applications, such as waste treatment and bioenergy production, using engineered phototrophic microbial communities.


Assuntos
Anaerobiose/fisiologia , Carbono/metabolismo , Chlorobi/metabolismo , Elétrons , Geobacter/metabolismo , Fotossíntese/fisiologia , Processos Autotróficos/fisiologia , Biocombustíveis , Chlorobi/crescimento & desenvolvimento , Chlorobi/ultraestrutura , Técnicas de Cocultura , Citocromos/metabolismo , Geobacter/crescimento & desenvolvimento , Geobacter/ultraestrutura , Oxirredução , Porinas/metabolismo
14.
ISME J ; 11(2): 405-414, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27801910

RESUMO

Productivity is a major determinant of ecosystem diversity. Microbial ecosystems are the most diverse on the planet yet very few relationships between diversity and productivity have been reported as compared with macro-ecological studies. Here we evaluated the spatial relationships of productivity and microbiome diversity in a laboratory-cultivated photosynthetic mat. The goal was to determine how spatial diversification of microorganisms drives localized carbon and energy acquisition rates. We measured sub-millimeter depth profiles of net primary productivity and gross oxygenic photosynthesis in the context of the localized microenvironment and community structure, and observed negative correlations between species richness and productivity within the energy-replete, photic zone. Variations between localized community structures were associated with distinct taxa as well as environmental profiles describing a continuum of biological niches. Spatial regions in the photic zone corresponding to high primary productivity and photosynthesis rates had relatively low-species richness and high evenness. Hence, this system exhibited negative species-productivity and species-energy relationships. These negative relationships may be indicative of stratified, light-driven microbial ecosystems that are able to be the most productive with a relatively smaller, even distributions of species that specialize within photic zones.


Assuntos
Biodiversidade , Microbiota/fisiologia , Carbono/metabolismo , Ecossistema , Metabolismo Energético , Luz , Microbiota/genética , Microbiota/efeitos da radiação , Fotossíntese/efeitos da radiação , Dinâmica Populacional
15.
Nat Rev Microbiol ; 14(10): 651-62, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27573579

RESUMO

Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Transporte de Elétrons , Minerais/metabolismo , Archaea/metabolismo , Biodegradação Ambiental , Biotecnologia/métodos , Citocromos c/genética , Redes e Vias Metabólicas/genética , Minerais/química , Nanofios , Oxirredução
16.
mBio ; 7(4)2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27460798

RESUMO

UNLABELLED: Harnessing the metabolic potential of photosynthetic microbes for next-generation biotechnology objectives requires detailed scientific understanding of the physiological constraints and regulatory controls affecting carbon partitioning between biomass, metabolite storage pools, and bioproduct synthesis. We dissected the cellular mechanisms underlying the remarkable physiological robustness of the euryhaline unicellular cyanobacterium Synechococcus sp. strain PCC 7002 (Synechococcus 7002) and identify key mechanisms that allow cyanobacteria to achieve unprecedented photoautotrophic productivities (~2.5-h doubling time). Ultrafast growth of Synechococcus 7002 was supported by high rates of photosynthetic electron transfer and linked to significantly elevated transcription of precursor biosynthesis and protein translation machinery. Notably, no growth or photosynthesis inhibition signatures were observed under any of the tested experimental conditions. Finally, the ultrafast growth in Synechococcus 7002 was also linked to a 300% expansion of average cell volume. We hypothesize that this cellular adaptation is required at high irradiances to support higher cell division rates and reduce deleterious effects, corresponding to high light, through increased carbon and reductant sequestration. IMPORTANCE: Efficient coupling between photosynthesis and productivity is central to the development of biotechnology based on solar energy. Therefore, understanding the factors constraining maximum rates of carbon processing is necessary to identify regulatory mechanisms and devise strategies to overcome productivity constraints. Here, we interrogate the molecular mechanisms that operate at a systems level to allow cyanobacteria to achieve ultrafast growth. This was done by considering growth and photosynthetic kinetics with global transcription patterns. We have delineated putative biological principles that allow unicellular cyanobacteria to achieve ultrahigh growth rates through photophysiological acclimation and effective management of cellular resource under different growth regimes.


Assuntos
Adaptação Fisiológica , Processos Autotróficos , Fotossíntese , Synechococcus/fisiologia , Carbono/metabolismo , Luz , Oxirredução , Synechococcus/citologia , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo
17.
Nat Commun ; 7: 11237, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052662

RESUMO

Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds.


Assuntos
Bactérias/genética , Carbono/química , DNA Bacteriano/genética , Água Subterrânea/química , Consórcios Microbianos/fisiologia , Rios/química , Bactérias/classificação , Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Ecossistema , Água Subterrânea/microbiologia , Rios/microbiologia , Análise de Sequência de DNA , Washington , Movimentos da Água , Poluentes Químicos da Água/metabolismo
18.
Microbiology (Reading) ; 162(6): 930-941, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27010745

RESUMO

Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.


Assuntos
Nitrato Redutases/genética , Nitratos/metabolismo , Nitritos/metabolismo , Shewanella putrefaciens/metabolismo , Sequência de Aminoácidos/genética , Ácido Aspártico/metabolismo , Grupo dos Citocromos c/metabolismo , Hidroquinonas/metabolismo , Lisina/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Alinhamento de Sequência , Shewanella putrefaciens/genética
19.
Front Microbiol ; 6: 1075, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483786

RESUMO

The tandem gene clusters orfR-ombB-omaB-omcB and orfS-ombC-omaC-omcC of the metal-reducing bacterium Geobacter sulfurreducens PCA are responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III)-citrate and ferrihydrite [a poorly crystalline Fe(III) oxide]. Each gene cluster encodes a putative transcriptional factor (OrfR/OrfS), a porin-like outer-membrane protein (OmbB/OmbC), a periplasmic c-type cytochrome (c-Cyt, OmaB/OmaC) and an outer-membrane c-Cyt (OmcB/OmcC). The individual roles of OmbB, OmaB and OmcB in extracellular reduction of Fe(III), however, have remained either uninvestigated or controversial. Here, we showed that replacements of ombB, omaB, omcB, and ombB-omaB with an antibiotic gene in the presence of ombC-omaC-omcC had no impact on reduction of Fe(III)-citrate by G. sulfurreducens PCA. Disruption of ombB, omaB, omcB, and ombB-omaB in the absence of ombC-omaC-omcC, however, severely impaired the bacterial ability to reduce Fe(III)-citrate as well as ferrihydrite. These results unequivocally demonstrate an overlapping role of ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction by G. sulfurreducens PCA. Involvement of both ombB-omaB-omcB and ombC-omaC-omcC in extracellular Fe(III) reduction reflects the importance of these trans-outer membrane protein complexes in the physiology of this bacterium. Moreover, the kinetics of Fe(III)-citrate and ferrihydrite reduction by these mutants in the absence of ombC-omaC-omcC were nearly identical, which suggests that absence of any protein subunit eliminates function of OmaB/OmbB/OmcB protein complex. Finally, orfS was found to have a negative impact on the extracellular reduction of Fe(III)-citrate and ferrihydrite in G. sulfurreducens PCA probably by serving as a transcriptional repressor.

20.
Biotechnol Biofuels ; 8: 156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413155

RESUMO

The development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA