RESUMO
Background: The biological mechanisms leading some tobacco-exposed individuals to develop early-stage chronic obstructive pulmonary disease (COPD) are poorly understood. This knowledge gap hampers development of disease-modifying agents for this prevalent condition. Objectives: Accordingly, with National Heart, Lung and Blood Institute support, we initiated the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) Study of Early COPD Progression (SOURCE), a multicenter observational cohort study of younger individuals with a history of cigarette smoking and thus at-risk for, or with, early-stage COPD. Our overall objectives are to identify those who will develop COPD earlier in life, characterize them thoroughly, and by contrasting them to those not developing COPD, define mechanisms of disease progression. Methods/Discussion: SOURCE utilizes the established SPIROMICS clinical network. Its goal is to enroll n=649 participants, ages 30-55 years, all races/ethnicities, with ≥10 pack-years cigarette smoking, in either Global initiative for chronic Obstructive Lung Disease (GOLD) groups 0-2 or with preserved ratio-impaired spirometry; and an additional n=40 never-smoker controls. Participants undergo baseline and 3-year follow-up visits, each including high-resolution computed tomography, respiratory oscillometry and spirometry (pre- and postbronchodilator administration), exhaled breath condensate (baseline only), and extensive biospecimen collection, including sputum induction. Symptoms, interim health care utilization, and exacerbations are captured every 6 months via follow-up phone calls. An embedded bronchoscopy substudy involving n=100 participants (including all never-smokers) will allow collection of lower airway samples for genetic, epigenetic, genomic, immunological, microbiome, mucin analyses, and basal cell culture. Conclusion: SOURCE should provide novel insights into the natural history of lung disease in younger individuals with a smoking history, and its biological basis.
RESUMO
Chronic obstructive pulmonary disease (COPD) is characterized by infiltration of the airways and lung parenchyma by inflammatory cells. Lung pathology results from the cumulative effect of complex and aberrant interactions between multiple cell types. However, three cell types, natural killer cells (NK), dendritic cells (DCs), and regulatory T cells (Tregs), are understudied and underappreciated. We propose that their mutual interactions significantly contribute to the development of COPD. Here, we highlight recent advances in NK, DC, and Treg biology with relevance to COPD, discuss their pairwise bidirectional interactions, and identify knowledge gaps that must be bridged to develop novel therapies. Understanding their interactions will be crucial for therapeutic use of autologous Treg, an approach proving effective in other diseases with immune components.
Assuntos
Comunicação Celular , Células Dendríticas , Células Matadoras Naturais , Doença Pulmonar Obstrutiva Crônica , Linfócitos T Reguladores , Animais , Humanos , Comunicação Celular/imunologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Linfócitos T Reguladores/imunologiaRESUMO
While type I conventional dendritic cells (cDC1s) are vital for generating adaptive immunity against intracellular pathogens and tumors, their role in defense against fungal pathogen Cryptococcus neoformans remains unclear. We investigated the role of the cDC1 subset in a fungus-restricting mouse model of cryptococcal infection. The cDC1 subset displayed a unique transcriptional signature with highly upregulated T-cell recruitment, polarization, and activation pathways compared to other DC subsets. Using Batf3-/- mice, which lack the cDC1 population, our results support that Batf3-dependent cDC1s are pivotal for the development of the effective immune response against cryptococcal infection, particularly within the lung and brain. Deficiency in Batf3 cDC1 led to diminished CD4 accumulation and decreased IFNγ production across multiple organs, supporting that cDC1s are a major driver of potent Th1 responses during cryptococcal infection. Consistently, mice lacking Batf3-cDC1 demonstrated markedly diminished fungicidal activity and weaker containment of the fungal pathogen. In conclusion, Batf3-dependent cDC1 can function as a linchpin in mounting Th1 response, ensuring effective fungal control during cryptococcal infection. Harnessing cDC1 pathways may present a promising strategy for interventions against this pathogen.IMPORTANCECryptococcus neoformans causes severe meningoencephalitis, accounting for an estimated 200,000 deaths each year. Central to mounting an effective defense against these infections is T-cell-mediated immunity, which is orchestrated by dendritic cells (DCs). The knowledge about the role of specific DC subsets in shaping anti-cryptococcal immunity is limited. Here, we demonstrate that Batf3 cDC1s are important drivers of protective Th1 CD4 T-cell responses required for clearance of cryptococcal infection. Deficiency of Batf3 cDC1 in the infected mice leads to significantly reduced Th1 response and exacerbated fungal growth to the point where depleting the remaining CD4 T cells no longer affects fungal burden. Unveiling this pivotal role of cDC1 in antifungal defense is likely to be important for the development of vaccines and therapies against life-threatening fungal pathogens.
Assuntos
Criptococose , Cryptococcus neoformans , Meningoencefalite , Animais , Camundongos , Linfócitos T CD4-Positivos , Criptococose/microbiologia , Células Dendríticas , Imunidade CelularRESUMO
Rationale: Acute exacerbations of chronic obstructive pulmonary disease (AE-COPDs) are associated with a significant disease burden. Blood immune phenotyping may improve our understanding of a COPD endotype at increased risk of exacerbations. Objective: To determine the relationship between the transcriptome of circulating leukocytes and COPD exacerbations. Methods: Blood RNA sequencing data (n = 3,618) from the COPDGene (Genetic Epidemiology of COPD) study were analyzed. Blood microarray data (n = 646) from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study were used for validation. We tested the association between blood gene expression and AE-COPDs. We imputed the abundance of leukocyte subtypes and tested their association with prospective AE-COPDs. Flow cytometry was performed on blood in SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) (n = 127), and activation markers for T cells were tested for association with prospective AE-COPDs. Measurements and Main Results: Exacerbations were reported 4,030 and 2,368 times during follow-up in COPDGene (5.3 ± 1.7 yr) and ECLIPSE (3 yr), respectively. We identified 890, 675, and 3,217 genes associated with a history of AE-COPDs, persistent exacerbations (at least one exacerbation per year), and prospective exacerbation rate, respectively. In COPDGene, the number of prospective exacerbations in patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stage ⩾2) was negatively associated with circulating CD8+ T cells, CD4+ T cells, and resting natural killer cells. The negative association with naive CD4+ T cells was replicated in ECLIPSE. In the flow-cytometry study, an increase in CTLA4 on CD4+ T cells was positively associated with AE-COPDs. Conclusions: Individuals with COPD with lower circulating lymphocyte counts, particularly decreased CD4+ T cells, are more susceptible to AE-COPDs, including persistent exacerbations.
Assuntos
Linfócitos T CD8-Positivos , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Prospectivos , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/complicações , TranscriptomaRESUMO
Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.
Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Progressão da Doença , Fumar/efeitos adversos , Volume Expiratório Forçado , Lavagem Broncoalveolar , BiomarcadoresAssuntos
Doença Pulmonar Obstrutiva Crônica , Viroses , Humanos , Integrina alfa1 , Pulmão , Células Matadoras Naturais , AntiviraisRESUMO
BACKGROUND: Airway macrophages (AM), crucial for the immune response in chronic obstructive pulmonary disease (COPD), are exposed to environmental particulate matter (PM), which they retain in their cytoplasm as black carbon (BC). However, whether AM BC accurately reflects environmental PM2.5 exposure, and can serve as a biomarker of COPD outcomes, is unknown. METHODS: We analyzed induced sputum from participants at 7 of 12 sites SPIROMICS sites for AM BC content, which we related to exposures and to lung function and respiratory outcomes. Models were adjusted for batch (first vs. second), age, race (white vs. non-white), income (<$35,000, $35,000~$74,999, ≥$75,000, decline to answer), BMI, and use of long-acting beta-agonist/long-acting muscarinic antagonists, with sensitivity analysis performed with inclusion of urinary cotinine and lung function as covariates. RESULTS: Of 324 participants, 143 were current smokers and 201 had spirometric-confirmed COPD. Modeled indoor fine (< 2.5 µm in aerodynamic diameter) particulate matter (PM2.5) and urinary cotinine were associated with higher AM BC. Other assessed indoor and ambient pollutant exposures were not associated with higher AM BC. Higher AM BC was associated with worse lung function and odds of severe exacerbation, as well as worse functional status, respiratory symptoms and quality of life. CONCLUSION: Indoor PM2.5 and cigarette smoke exposure may lead to increased AM BC deposition. Black carbon content in AMs is associated with worse COPD morbidity in current and former smokers, which remained after sensitivity analysis adjusting for cigarette smoke burden. Airway macrophage BC, which may alter macrophage function, could serve as a predictor of experiencing worse respiratory symptoms and impaired lung function.
Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Humanos , Qualidade de Vida , Cotinina , Fuligem/efeitos adversos , Fuligem/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/complicações , Macrófagos , Morbidade , Carbono , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análiseRESUMO
Rationale: Chronic obstructive pulmonary disease (COPD) is variable in its development. Lung microbiota and metabolites collectively may impact COPD pathophysiology, but relationships to clinical outcomes in milder disease are unclear. Objectives: Identify components of the lung microbiome and metabolome collectively associated with clinical markers in milder stage COPD. Methods: We analyzed paired microbiome and metabolomic data previously characterized from bronchoalveolar lavage fluid in 137 participants in the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), or (GOLD [Global Initiative for Chronic Obstructive Lung Disease Stage 0-2). Datasets used included 1) bacterial 16S rRNA gene sequencing; 2) untargeted metabolomics of the hydrophobic fraction, largely comprising lipids; and 3) targeted metabolomics for a panel of hydrophilic compounds previously implicated in mucoinflammation. We applied an integrative approach to select features and model 14 individual clinical variables representative of known associations with COPD trajectory (lung function, symptoms, and exacerbations). Measurements and Main Results: The majority of clinical measures associated with the lung microbiome and metabolome collectively in overall models (classification accuracies, >50%, P < 0.05 vs. chance). Lower lung function, COPD diagnosis, and greater symptoms associated positively with Streptococcus, Neisseria, and Veillonella, together with compounds from several classes (glycosphingolipids, glycerophospholipids, polyamines and xanthine, an adenosine metabolite). In contrast, several Prevotella members, together with adenosine, 5'-methylthioadenosine, sialic acid, tyrosine, and glutathione, associated with better lung function, absence of COPD, or less symptoms. Significant correlations were observed between specific metabolites and bacteria (Padj < 0.05). Conclusions: Components of the lung microbiome and metabolome in combination relate to outcome measures in milder COPD, highlighting their potential collaborative roles in disease pathogenesis.
Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Adenosina , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , RNA Ribossômico 16S/genéticaRESUMO
Obesity impairs host defense against Klebsiella pneumoniae, but responsible mechanisms are incompletely understood. To determine the impact of diet-induced obesity on pulmonary host defense against K. pneumoniae, we fed 6-wk-old male C57BL/6j mice a normal diet (ND) or high-fat diet (HFD) (13% vs. 60% fat, respectively) for 16 wk. Mice were intratracheally infected with Klebsiella, assayed at 24 or 48 h for bacterial colony-forming units, lung cytokines, and leukocytes from alveolar spaces, lung parenchyma, and gonadal adipose tissue were assessed using flow cytometry. Neutrophils from uninfected mice were cultured with and without 2-deoxy-d-glucose (2-DG) and assessed for phagocytosis, killing, reactive oxygen intermediates (ROI), transport of 2-DG, and glucose transporter (GLUT1-4) transcripts, and protein expression of GLUT1 and GLUT3. HFD mice had higher lung and splenic bacterial burdens. In HFD mice, baseline lung homogenate concentrations of IL-1ß, IL-6, IL-17, IFN-γ, CXCL2, and TNF-α were reduced relative to ND mice, but following infection were greater for IL-6, CCL2, CXCL2, and IL-1ß (24 h only). Despite equivalent lung homogenate leukocytes, HFD mice had fewer intraalveolar neutrophils. HFD neutrophils exhibited decreased Klebsiella phagocytosis and killing and reduced ROI to heat-killed Klebsiella in vitro. 2-DG transport was lower in HFD neutrophils, with reduced GLUT1 and GLUT3 transcripts and protein (GLUT3 only). Blocking glycolysis with 2-DG impaired bacterial killing and ROI production in neutrophils from mice fed ND but not HFD. Diet-induced obesity impairs pulmonary Klebsiella clearance and augments blood dissemination by reducing neutrophil killing and ROI due to impaired glucose transport.
Assuntos
Dieta , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Neutrófilos/metabolismo , Obesidade/microbiologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Carga Bacteriana/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Medula Óssea/patologia , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Desoxiglucose/farmacologia , Dieta Hiperlipídica , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Glicólise/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Infecções por Klebsiella/sangue , Infecções por Klebsiella/complicações , Klebsiella pneumoniae/efeitos dos fármacos , Contagem de Leucócitos , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Obesidade/sangue , Obesidade/complicações , Fagocitose/efeitos dos fármacos , Pneumonia/microbiologia , Pneumonia/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/microbiologiaRESUMO
In chronic obstructive pulmonary disease (COPD), lung natural killer cells (NKs) lyse autologous lung epithelial cells in vitro, but underlying mechanisms and their relationship to epithelial cell apoptosis in vivo are undefined. Although this cytolytic capacity of lung NKs depends on priming by dendritic cells (DCs), whether priming correlates with DC maturation or is limited to a specific DC subset is also unknown. We recruited ever-smokers (≥10 pack-years; n = 96) undergoing clinically indicated lung resections. We analyzed lung NKs for cytotoxic molecule transcripts and for cytotoxicity, which we correlated with in situ detection of activated Caspase-3/7+ airway epithelial cells. To investigate DC priming, we measured lung DC expression of CCR2, CCR7, and CX3CR1 and cocultured peripheral blood NKs with autologous lung DCs, either matured using lipopolysaccharide (LPS) (nonobstructed smokers) or separated into conventional dendritic cell type-1 (cDC1) versus cDC type-2 (cDC2) (COPD). Lung NKs in COPD expressed more perforin (P < 0.02) and granzyme B (P < 0.03) transcripts; inhibiting perforin blocked in vitro killing by lung NKs. Cytotoxicity in vitro correlated significantly (Sr = 0.68, P = 0.0043) with numbers of apoptotic epithelial cells per airway. In nonobstructed smokers, LPS-induced maturation enhanced DC-mediated priming of blood NKs, reflected by greater epithelial cell death. Although CCR7 expression was greater in COPD in both cDC1 (P < 0.03) and cDC2 (P = 0.009), only lung cDC1 primed NK killing. Thus, rather than being intrinsic to those with COPD, NK priming is a capacity of human lung DCs that is inducible by recognition of bacterial (and possibly other) danger signals and restricted to the cDC1 subset.
Assuntos
Células Dendríticas/imunologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Pulmão/patologia , Perforina/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/patologia , Estudos de Casos e Controles , Citotoxinas/efeitos adversos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Granzimas/genética , Granzimas/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/efeitos adversosRESUMO
Disseminated cryptococcosis has a nearly 70% mortality, mostly attributed to CNS infection, with lesser-known effects on other organs. Immune protection against Cryptococcus relies on Th1 immunity with M1 polarization, rendering macrophages fungicidal. The importance of M1-upregulated inducible NO synthase (iNOS) has been documented in pulmonary anticryptococcal defenses, whereas its role in disseminated cryptococcosis remains controversial. Here we examined the effect of iNOS deletion in disseminated (i.v.) C. deneoformans 52D infection, comparing wild-type (C57BL/6J) and iNOS-/- mice. iNOS-/- mice had significantly reduced survival and nearly 100-fold increase of the kidney fungal burden, without increases in the lungs, spleen, or brain. Histology revealed extensive lesions and almost complete destruction of the kidney cortical area with a loss of kidney function. The lack of fungal control was not due to a failure to recruit immune cells because iNOS-/- mice had increased kidney leukocytes. iNOS-/- mice also showed no defect in T cell polarization. We conclude that iNOS is critically required for local anticryptococcal defenses in the kidneys, whereas it appears to be dispensable in other organs during disseminated infection. This study exemplifies a unique phenotype of local immune defenses in the kidneys and the organ-specific importance of a single fungicidal pathway.
Assuntos
Criptococose , Cryptococcus , Animais , Antifúngicos , Rim , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/genéticaRESUMO
Chronic obstructive pulmonary disease (COPD) is heterogeneous in development, progression, and phenotypes. Little is known about the lung microbiome, sampled by bronchoscopy, in milder COPD and its relationships to clinical features that reflect disease heterogeneity (lung function, symptom burden, and functional impairment). Using bronchoalveolar lavage fluid collected from 181 never-smokers and ever-smokers with or without COPD (GOLD 0-2) enrolled in the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS), we find that lung bacterial composition associates with several clinical features, in particular bronchodilator responsiveness, peak expiratory flow rate, and forced expiratory flow rate between 25 and 75% of FVC (FEF25-75). Measures of symptom burden (COPD Assessment Test) and functional impairment (six-minute walk distance) also associate with disparate lung microbiota composition. Drivers of these relationships include members of the Streptococcus, Prevotella, Veillonella, Staphylococcus, and Pseudomonas genera. Thus, lung microbiota differences may contribute to airway dysfunction and airway disease in milder COPD.
Assuntos
Bactérias/classificação , Pulmão/microbiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Adulto , Idoso , Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Feminino , Volume Expiratório Forçado , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/microbiologia , EspirometriaRESUMO
Rationale: The association between aging and idiopathic pulmonary fibrosis has been established. The associations between aging-related biomarkers and interstitial lung abnormalities (ILA) have not been comprehensively evaluated.Objectives: To evaluate the associations among aging biomarkers, ILA, and all-cause mortality.Methods: In the FHS (Framingham Heart Study), we evaluated associations among plasma biomarkers (IL-6, CRP [C-reactive protein], TNFR [tumor necrosis factor α receptor II], GDF15 [growth differentiation factor 15], cystatin-C, HGBA1C [Hb A1C], insulin, IGF1 [insulin-like growth factor 1], and IGFBP1 [IGF binding protein 1] and IGFBP3]), ILA, and mortality. Causal inference analysis was used to determine whether biomarkers mediated age. GDF15 results were replicated in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) Study.Measurements and Main Results: In the FHS, there were higher odds of ILA per increase in natural log-transformed GDF15 (odds ratio [95% confidence interval], 3.4 [1.8-6.4]; P = 0.0002), TNFR (3.1 [1.6-5.8]; P = 0.004), IL-6 (1.8 [1.4-2.4]; P < 0.0001), and CRP (1.7 [1.3-2.0]; P < 0.0001). In the FHS, after adjustment for multiple comparisons, no biomarker was associated with increased mortality, but the associations of GDF15 (hazard ratio, 2.0 [1.1-3.5]; P = 0.02), TNFR (1.8 [1.0-3.3]; P = 0.05), and IGFBP1 (1.3 [1.1-1.7]; P = 0.01) approached significance. In the COPDGene Study, higher natural log-transformed GDF15 was associated with ILA (odds ratio, 8.1 [3.1-21.4]; P < 0.0001) and mortality (hazard ratio, 1.6 [1.1-2.2]; P = 0.01). Causal inference analysis showed that the association of age with ILA was mediated by IL-6 (P < 0.0001) and TNFR (P = 0.002) and was likely mediated by GDF15 (P = 0.008) in the FHS and was mediated by GDF15 (P = 0.001) in the COPDGene Study.Conclusions: Some aging-related biomarkers are associated with ILA. GDF15, in particular, may explain some of the associations among age, ILA, and mortality.
Assuntos
Envelhecimento/sangue , Doenças Pulmonares Intersticiais/sangue , Doenças Pulmonares Intersticiais/mortalidade , Adulto , Fatores Etários , Idoso , Biomarcadores/sangue , Feminino , Fator 15 de Diferenciação de Crescimento/sangue , Humanos , Estudos Longitudinais , Doenças Pulmonares Intersticiais/diagnóstico , Masculino , Pessoa de Meia-Idade , Razão de Chances , Taxa de SobrevidaRESUMO
Alveolar macrophages (AMs) are resident immune cells of the lung that are critical for host defense. AMs are capable of proliferative renewal, yet their numbers are known to decrease with aging and increase with cigarette smoking. The mechanism by which AM proliferation is physiologically restrained, and whether dysregulation of this brake contributes to altered AM numbers in pathologic circumstances, however, remains unknown. Mice of advanced age exhibited diminished basal AM numbers and contained elevated PGE2 levels in their bronchoalveolar lavage fluid (BALF) as compared with young mice. Exogenous PGE2 inhibited AM proliferation in an E prostanoid receptor 2 (EP2)-cyclic AMP-dependent manner. Furthermore, EP2 knockout (EP2 KO) mice exhibited elevated basal AM numbers, and their AMs resisted the ability of PGE2 and aged BALF to inhibit proliferation. In contrast, increased numbers of AMs in mice exposed to cigarette smoking were associated with reduced PGE2 levels in BALF and were further exaggerated in EP2 KO mice. Collectively, our findings demonstrate that PGE2 functions as a tunable brake on AM numbers under physiologic and pathophysiological conditions.
Assuntos
Macrófagos Alveolares/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Envelhecimento/fisiologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Dinoprostona/metabolismo , Dinoprostona/fisiologia , Feminino , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/fisiologia , Fumar/efeitos adversosRESUMO
Levels of iron and iron-related proteins including ferritin are higher in the lung tissue and lavage fluid of individuals with chronic obstructive pulmonary disease (COPD), when compared to healthy controls. Whether more iron in the extracellular milieu of the lung associates with distinct clinical phenotypes of COPD, including increased exacerbation susceptibility, is unknown. We measured iron and ferritin levels in the bronchoalveolar lavage fluid (BALF) of participants enrolled in the SubPopulations and InteRmediate Outcome Measures In COPD (SPIROMICS) bronchoscopy sub-study (n = 195). BALF Iron parameters were compared to systemic markers of iron availability and tested for association with FEV1 % predicted and exacerbation frequency. Exacerbations were modelled using a zero-inflated negative binomial model using age, sex, smoking, and FEV1 % predicted as clinical covariates. BALF iron and ferritin were higher in participants with COPD and in smokers without COPD when compared to non-smoker control participants but did not correlate with systemic iron markers. BALF ferritin and iron were elevated in participants who had COPD exacerbations, with a 2-fold increase in BALF ferritin and iron conveying a 24% and 2-fold increase in exacerbation risk, respectively. Similar associations were not observed with plasma ferritin. Increased airway iron levels may be representative of a distinct pathobiological phenomenon that results in more frequent COPD exacerbation events, contributing to disease progression in these individuals.
Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Líquido da Lavagem Broncoalveolar/química , Progressão da Doença , Feminino , Ferritinas/metabolismo , Volume Expiratório Forçado , Humanos , Ferro/fisiologia , Proteínas de Ligação ao Ferro/fisiologia , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Testes de Função Respiratória , Fatores de Risco , Índice de Gravidade de DoençaRESUMO
The bacterial microbiome of human body sites, previously considered sterile, remains highly controversial because it can be challenging to isolate signal from noise when low-biomass samples are being analyzed. We tested the hypothesis that stochastic sequencing noise, separable from reagent contamination, is generated during sequencing on the Illumina MiSeq platform when DNA input is below a critical threshold. We first purified DNA from serial dilutions of Pseudomonas aeruginosa and from negative controls using three DNA purification kits, quantified input using droplet digital PCR, and then sequenced the 16S rRNA gene in four technical replicates. This process identified reproducible contaminant signal that was separable from an irreproducible stochastic noise, which occurred as bacterial biomass of samples decreased. This approach was then applied to authentic respiratory samples from healthy individuals (n = 22) that ranged from high to ultralow bacterial biomass. Using oral rinse, bronchoalveolar lavage (BAL) fluid, and exhaled breath condensate (EBC) samples and matched controls, we were able to demonstrate (i) that stochastic noise dominates sequencing in real-world low-bacterial-biomass samples that contain fewer than 104 copies of the 16S rRNA gene per sample, (ii) that critical examination of the community composition of technical replicates can be used to separate signal from noise, and (iii) that EBC is an irreproducible sampling modality for sampling the microbiome of the lower airways. We anticipate that these results combined with suggested methods for identifying and dealing with noisy communities will facilitate increased reproducibility while simultaneously permitting characterization of potentially important low-biomass communities.IMPORTANCE DNA contamination from external sources (reagents, environment, operator, etc.) has long been assumed to be the main cause of spurious signals that appear under low-bacterial-biomass conditions. Here, we demonstrate that contamination can be separated from another, random signal generated during low-biomass-sample sequencing. This stochastic noise is not reproduced between technical replicates; however, results for any one replicate taken alone could look like a microbial community different from the controls. Using this information, we investigated respiratory samples from healthy humans and determined the narrow range of bacterial biomass where samples transition from producing reproducible microbial sequences to ones dominated by noise. We present a rigorous approach to studies involving low-bacterial-biomass samples to detect this source of noise and provide a framework for deciding if a sample is likely to be dominated by noise. We anticipate that this work will facilitate increased reproducibility in the characterization of potentially important low-biomass communities.
Assuntos
Biomassa , Contaminação por DNA , DNA Bacteriano/isolamento & purificação , Pseudomonas aeruginosa/genética , RNA Ribossômico 16S/genética , Adulto , Idoso , DNA Bacteriano/genética , Feminino , Humanos , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sistema Respiratório/microbiologia , Análise de Sequência de DNA , Processos EstocásticosRESUMO
Novel proteomics platforms, such as the aptamer-based SOMAscan platform, can quantify large numbers of proteins efficiently and cost-effectively and are rapidly growing in popularity. However, comparisons to conventional immunoassays remain underexplored, leaving investigators unsure when cross-assay comparisons are appropriate. The correlation of results from immunoassays with relative protein quantification is explored by SOMAscan. For 63 proteins assessed in two chronic obstructive pulmonary disease (COPD) cohorts, subpopulations and intermediate outcome measures in COPD Study (SPIROMICS), and COPDGene, using myriad rules based medicine multiplex immunoassays and SOMAscan, Spearman correlation coefficients range from -0.13 to 0.97, with a median correlation coefficient of ≈0.5 and consistent results across cohorts. A similar range is observed for immunoassays in the population-based Multi-Ethnic Study of Atherosclerosis and for other assays in COPDGene and SPIROMICS. Comparisons of relative quantification from the antibody-based Olink platform and SOMAscan in a small cohort of myocardial infarction patients also show a wide correlation range. Finally, cis pQTL data, mass spectrometry aptamer confirmation, and other publicly available data are integrated to assess relationships with observed correlations. Correlation between proteomics assays shows a wide range and should be carefully considered when comparing and meta-analyzing proteomics data across assays and studies.