Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 85(11): 113908, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430125

RESUMO

Developments in modern neutron spectroscopy have led to typical sample sizes decreasing from few cm to several mm in diameter samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can readily be combined with advanced focussing geometries and with multiplexing instrument designs. We present a combination of simulations and data showing three different energies simultaneously reflected from one analyser. Experiments were performed on a cold triple axis instrument and on a prototype inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor of 2.4 in flux gain compared to a single flat analyser slab.

2.
Proc Natl Acad Sci U S A ; 104(39): 15259-63, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17884981

RESUMO

The quantum spin fluctuations of the S = 1/2 Cu ions are important in determining the physical properties of high-transition-temperature (high T(c)) copper oxide superconductors, but their possible role in the electron pairing of superconductivity remains an open question. The principal feature of the spin fluctuations in optimally doped high-T(c) superconductors is a well defined magnetic resonance whose energy (E(R)) tracks T(c) (as the composition is varied) and whose intensity develops like an order parameter in the superconducting state. We show that the suppression of superconductivity and its associated condensation energy by a magnetic field in the electron-doped high-T(c) superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) (T(c) = 24 K), is accompanied by the complete suppression of the resonance and the concomitant emergence of static antiferromagnetic order. Our results demonstrate that the resonance is intimately related to the superconducting condensation energy, and thus suggest that it plays a role in the electron pairing and superconductivity.


Assuntos
Físico-Química/métodos , Teoria Quântica , Cobre/química , Condutividade Elétrica , Elétrons , Magnetismo , Modelos Estatísticos , Nêutrons , Transição de Fase , Espalhamento de Radiação , Temperatura , Temperatura de Transição
3.
Phys Rev Lett ; 99(1): 017001, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17678181

RESUMO

We use inelastic neutron scattering to probe magnetic excitations of an optimally electron-doped superconductor Nd1.85Ce0.15CuO4-delta above and below its superconducting transition temperature Tc=25 K. In addition to gradually opening a spin pseudogap at the antiferromagnetic ordering wave vector Q=(1/2,1/2,0), the effect of superconductivity is to form a resonance centered also at Q=(1/2,1/2,0) but at energies above the spin pseudogap. The intensity of the resonance develops like a superconducting order parameter, similar to those for hole-doped superconductors and electron-doped Pr0.88LaCe0.12CuO4. The resonance is therefore a general phenomenon of cuprate superconductors, and must be fundamental to the mechanism of high-Tc superconductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA