Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pathogens ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38251330

RESUMO

A red mud suspension of ~700,000 m3 was accidentally released from the alumina plant in Ajka, Hungary, on the 4th of October 2010, flooding several buildings in the nearby towns. As there is no information in the literature on the effects of red mud on indoor mold growth, we conducted studies to answer the following question: does the heavy metal content of red mud inhibit fungal colonization in flooded houses? In order to gain knowledge on fungal spectra colonizing surfaces soaked with red mud and on the ability of fungi to grow on them, swabs, tape lifts, and air samples were collected from three case study buildings. A total of 43 fungal taxa were detected. The dominant species were Penicillium spp. on plaster/brick walls, but Aspergillus series Versicolores, Cladosporium, Acremonium, and Scopulariopsis spp. were also present. The level of airborne penicillia was high in all indoor samples. Selected fungal strains were subcultured on 2% MEA with 10-1 and 10-4 dilutions of red mud. The growth rate of most of the strains was not significantly reduced by red mud on the artificial media. The consequences of similar industrial flooding on indoor molds are also discussed in this paper.

2.
J Environ Radioact ; 201: 32-42, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30743170

RESUMO

The elevated radioactivity of the thermal waters of Buda Thermal Karst (BTK), Hungary is known and studied since the beginning of the 20th century. In the recent studies, the anomalous 222Rn/226Ra ratios have drawn the attention to the existence of local 222Rn source. Biogeochemical precipitates (i.e. biofilms) in spring caves were found to have high adsorption capacity, accumulating e.g. 226Ra. Biogeochemical precipitates are ubiquitous in the thermal springs of BTK, occurring in different amount and colours (dark grey, brown, red, white), and have different microbial communities and elemental composition. The detailed investigation of the radioactivity of spring waters highlighted the different 226Ra and 222Rn activity concentrations. The present study aimed to survey the radioactivity of the thermal springs of Gellért Hill area, together with the biogeochemical precipitates and air above the water level, and to assess the evolution of the radioactivity of known-aged precipitates, formed during in situ experiments. We found that the basic physicochemical parameters of the spring waters (field parameters, major ions) do not affect the adsorption capacity of biogeochemical precipitates. It was revealed by the conducted in situ experiments, that the flow conditions influence the evolution rate of precipitates, so their adsorption capacity. The 222Rn activity concentrations of spring waters are dependent on the area of the water surface, volume of air space above the water level, ventilation of the caves/channels and presence of calcite layer on the water surface. The latter has a blocking effect on degassing.


Assuntos
Radiação de Fundo , Fontes Termais/análise , Rádio (Elemento)/análise , Radônio/análise , Poluentes Radioativos da Água/análise , Precipitação Química , Hungria , Monitoramento de Radiação , Radioatividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA