RESUMO
In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor. Furthermore, A. tubingensis lipase and its immobilized derivative were characterized in terms of their optimal ranges of pH and temperature. A. tubingensis was shown to be a good producer of lipase, obviating the need for inducer addition. The enzyme extract had a hydrolytic activity of 23 U mL-1 and achieved better performance in the pH range of 7.5 to 9.0 and in the temperature range of 20 to 50 °C. The proposed immobilization system was effective, yielding an immobilized derivative with enhanced hydrolytic activity (35 U g-1), optimum activity over a broader pH range (5.6 to 8.4), and increased tolerance to high temperatures (40 to 60 â). This research represents a first step toward lipase production from A. tubingensis under a submerged culture and the development of an alternative immobilization system with a packed-bed reactor. The proposed system holds promise for saving time and resources in future industrial applications.
Assuntos
Reatores Biológicos , Enzimas Imobilizadas , Lipase , Lipase/química , Lipase/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Adsorção , Concentração de Íons de Hidrogênio , Aspergillus/enzimologia , Proteínas Fúngicas/química , TemperaturaRESUMO
The present work reports an optimization of the synthesis of MLM-type (medium, long, medium) structured lipids (SL) through an acidolysis reaction of grape seed oil with capric acid catalyzed by Rhizopus oryzae lipase immobilized. At first, tests were carried out by preparing the biocatalysts using enzyme loadings (0.15 to 1 g of enzymatic powder) for each gram of support. Enzyme loading was used 0.3 g of enzymatic powder, and hydrolytic activity of 1860 ± 23.4 IU/g was reached. Optimized conditions determined by the Central Composite Rotatable Design (CCRD) revealed that the acidolysis reaction reached approximately 59 % incorporation degree (%ID) after 24 h, in addition to the fact that the biocatalyst could maintain the incorporation degree in five consecutive cycles. From this high incorporation degree, cell viability assays were performed with murine fibroblast cell lines and human cervical adenocarcinoma cell lines. Concerning the cytotoxicity assays, the concentration of MLM-SL to 1.75 and 2 % v/v were able to induce cell death in 56 % and 64 % of adenocarcinoma cells, respectively. Human cervical adenocarcinoma cells showed greater sensitivity to the induction of cell death when using emulsions with MLM-SL > 1.75 % v/v compared to emulsions with lower content indicating a potential for combating carcinogenic cells.