Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artif Intell Med ; 147: 102723, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184356

RESUMO

Automatic diagnosis systems capable of handling multiple pathologies are essential in clinical practice. This study focuses on enhancing precise lesion localization, classification and delineation in transurethral resection of bladder tumor (TURBT) to reduce cancer recurrence. Despite deep learning models success, medical applications face challenges like small and limited datasets and poor image characterization, including the absence lack of color/texture modeling. To address these issues, three solutions are proposed: (1) an improved texture-constrained version of the pix2pixHD cGAN for data augmentation, addressing the tradeoff of generating high-quality images with enough stochasticity using the Fréchet Inception Distance (FID) measure. (2) Introducing the Multiple Mask and Boundary Scoring R-CNN (MM&BS R-CNN), a new mask sub-net scheme where multiple masks are generated from the different levels of the mask sub-net pipeline, improving segmentation accuracy by including a new scoring module to refine object boundaries. (3) A novel accelerated training strategy based on the SGD optimizer with the second momentum. Experimental results show significant mAP improvements: the data generation scheme improves by more than 12 %; MM&BS R-CNN proposed architecture is responsible for an improvement of about 1.25 %, and the training algorithm based on the second-order momentum increases mAP by 2-3 %. The simultaneous use of all three proposals improved the state-of-the-art mAP by 17.44 %.


Assuntos
Algoritmos , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/cirurgia , Gravação de Videoteipe
2.
Bioengineering (Basel) ; 10(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37106588

RESUMO

Breast cancer conservative treatment (BCCT) is a form of treatment commonly used for patients with early breast cancer. This procedure consists of removing the cancer and a small margin of surrounding tissue, while leaving the healthy tissue intact. In recent years, this procedure has become increasingly common due to identical survival rates and better cosmetic outcomes than other alternatives. Although significant research has been conducted on BCCT, there is no gold-standard for evaluating the aesthetic results of the treatment. Recent works have proposed the automatic classification of cosmetic results based on breast features extracted from digital photographs. The computation of most of these features requires the representation of the breast contour, which becomes key to the aesthetic evaluation of BCCT. State-of-the-art methods use conventional image processing tools that automatically detect breast contours based on the shortest path applied to the Sobel filter result in a 2D digital photograph of the patient. However, because the Sobel filter is a general edge detector, it treats edges indistinguishably, i.e., it detects too many edges that are not relevant to breast contour detection and too few weak breast contours. In this paper, we propose an improvement to this method that replaces the Sobel filter with a novel neural network solution to improve breast contour detection based on the shortest path. The proposed solution learns effective representations for the edges between the breasts and the torso wall. We obtain state of the art results on a dataset that was used for developing previous models. Furthermore, we tested these models on a new dataset that contains more variable photographs and show that this new approach shows better generalization capabilities as the previously developed deep models do not perform so well when faced with a different dataset for testing. The main contribution of this paper is to further improve the capabilities of models that perform the objective classification of BCCT aesthetic results automatically by improving upon the current standard technique for detecting breast contours in digital photographs. To that end, the models introduced are simple to train and test on new datasets which makes this approach easily reproducible.

3.
Artif Intell Med ; 126: 102275, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35346444

RESUMO

This paper confronts two approaches to classify bladder lesions shown in white light cystoscopy images when using small datasets: the classical one, where handcrafted-based features feed pattern recognition systems and the modern deep learning-based (DL) approach. In between, there are alternative DL models that had not received wide attention from the scientific community, even though they can be more appropriate for small datasets such as the human brain motivated capsule neural networks (CapsNets). However, CapsNets have not yet matured hence presenting lower performances than the most classic DL models. These models require higher computational resources, more computational skills from the physician and are more prone to overfitting, making them sometimes prohibitive in the routine of clinical practice. This paper shows that carefully handcrafted features used with more robust models can reach similar performances to the conventional DL-based models and deep CapsNets, making them more useful for clinical applications. Concerning feature extraction, it is proposed a new feature fusion approach for Ta and T1 bladder tumor detection by using decision fusion from multiple classifiers in a scheme known as stacking of classifiers. Three Neural Networks perform classification on three different feature sets, namely: Covariance of Color Histogram of Oriented Gradients, proposed in the ambit of this paper; Local Binary Patterns and Wavelet Coefficients taken from lower scales. Data diversity is ensured by a fourth Neural Network, which is used for decision fusion by combining the outputs of the ensemble elements to produce the classifier output. Both Feed Forward Neural Networks and Radial Basis Functions are used in the experiments. Contrarily, DL-based models extract automatically the best features at the cost of requiring huge amounts of training data, which in turn can be alleviated by using the Transfer Learning (TL) strategy. In this paper VGG16 and ResNet-34 pretrained in ImageNet were used for TL, slightly outperforming the proposed ensemble. CapsNets may overcome CNNs given their ability to deal with objects rotational invariance and spatial relationships. Therefore, they can be trained from scratch in applications using small amounts of data, which was beneficial for the current case, improving accuracy from 94.6% to 96.9%.


Assuntos
Neoplasias da Bexiga Urinária , Feminino , Humanos , Aprendizado de Máquina , Masculino , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Neoplasias da Bexiga Urinária/diagnóstico
4.
Artif Intell Med ; 119: 102141, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34531016

RESUMO

The majority of current systems for automatic diagnosis considers the detection of a unique and previously known pathology. Considering specifically the diagnosis of lesions in the small bowel using endoscopic capsule images, very few consider the possible existence of more than one pathology and when they do, they are mainly detection based systems therefore unable to localize the suspected lesions. Such systems do not fully satisfy the medical community, that in fact needs a system that detects any pathology and eventually more than one, when they coexist. In addition, besides the diagnostic capability of these systems, localizing the lesions in the image has been of great interest to the medical community, mainly for training medical personnel purposes. So, nowadays, the inclusion of the lesion location in automatic diagnostic systems is practically mandatory. Multi-pathology detection can be seen as a multi-object detection task and as each frame can contain different instances of the same lesion, instance segmentation seems to be appropriate for the purpose. Consequently, we argue that a multi-pathology system benefits from using the instance segmentation approach, since classification and segmentation modules are both required complementing each other in lesion detection and localization. According to our best knowledge such a system does not yet exist for the detection of WCE pathologies. This paper proposes a multi-pathology system that can be applied to WCE images, which uses the Mask Improved RCNN (MI-RCNN), a new mask subnet scheme which has shown to significantly improve mask predictions of the high performing state-of-the-art Mask-RCNN and PANet systems. A novel training strategy based on the second momentum is also proposed for the first time for training Mask-RCNN and PANet based systems. These approaches were tested using the public database KID, and the included pathologies were bleeding, angioectasias, polyps and inflammatory lesions. Experimental results show significant improvements for the proposed versions, reaching increases of almost 7% over the PANet model when the new proposed training approach was employed.


Assuntos
Endoscopia por Cápsula , Patologia , Aprendizado de Máquina , Patologia/métodos
5.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33727423

RESUMO

Let F be a totally real number field of odd degree. We prove several purely local criteria for the asymptotic Fermat's Last Theorem to hold over F and also, for the nonexistence of solutions to the unit equation over F. For example, if two totally ramifies and three splits completely in F, then the asymptotic Fermat's Last Theorem holds over F.

6.
Med Phys ; 47(1): 52-63, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31299096

RESUMO

PURPOSE: Wireless Capsule Endoscopy (WCE) is a minimally invasive diagnosis tool for lesion detection in the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the significant amount of acquired data leads to difficulties in the diagnosis by the physicians; which can be eased with computer assistance. This paper addresses a method for the automatic detection of tumors in WCE by using a two-step based procedure: region of interest selection and classification. METHODS: The first step aims to separate abnormal from normal tissue by using automatic segmentation based on a Gaussian Mixture Model (GMM). A modified version of the Anderson method for convergence acceleration of the expectation-maximization (EM) algorithm is proposed. The proposed features for both segmentation and classification are based on the CIELab color space, as a way of bypassing lightness variations, where the L component is discarded. Tissue variability among subjects, light inhomogeneities and even intensity differences among different devices can be overcome by using simultaneously features from both regions. In the second step, an ensemble system with partition of the training data with a new training scheme is proposed. At this stage, the gating network is trained after the experts have been trained decoupling the joint maximization of both modules. The partition module is also used at the test step, leading the incoming data to the most likely expert allowing incremental adaptation by preserving data diversity. RESULTS: This algorithm outperforms others based on texture features selected from Wavelets and Curvelets transforms, classified by a regular support vector machine (SVM) in more than 5%. CONCLUSIONS: This work shows that simpler features can outperform more elaborate ones if appropriately designed. In the current case, luminance was discarded to cope with saturated tissue, facilitating the color perception. Ensemble systems remain an open research field. In the current case, changes in both topology and training strategy have led to significant performance improvements. A system with this level of performance can be used in current clinical practice.


Assuntos
Endoscopia por Cápsula/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Intestinais/diagnóstico por imagem , Intestino Delgado/diagnóstico por imagem , Tecnologia sem Fio , Automação , Humanos , Máquina de Vetores de Suporte
7.
Phys Med Biol ; 63(3): 035031, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29271350

RESUMO

Correct classification of cystoscopy images depends on the interpreter's experience. Bladder cancer is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific community, texture information is more present in the medium to high frequency range which can be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. The segmentation module proposed in this paper takes advantage of the wavelet decomposition tree to discard poor texture information in such a way that both steps of the proposed algorithm segmentation and classification share the same focus on texture. Multilayer perceptron and a support vector machine with a stratified ten-fold cross-validation procedure were used for classification purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color by using both preprocessing and classification steps based on the DWT. The proposed method can achieve good performance on identifying bladder tumor frames. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis.


Assuntos
Algoritmos , Cistoscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias da Bexiga Urinária/diagnóstico , Bexiga Urinária/patologia , Análise de Ondaletas , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Diagnóstico por Computador/métodos , Humanos , Pessoa de Meia-Idade , Máquina de Vetores de Suporte , Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/diagnóstico por imagem
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 656-659, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29059958

RESUMO

Nowadays the diagnosis of bladder lesions relies upon cystoscopy examination and depends on the interpreter's experience. State of the art of bladder tumor identification are based on 3D reconstruction, using CT images (Virtual Cystoscopy) or images where the structures are exalted with the use of pigmentation, but none uses white light cystoscopy images. An initial attempt to automatically identify tumoral tissue was already developed by the authors and this paper will develop this idea. Traditional cystoscopy images processing has a huge potential to improve early tumor detection and allows a more effective treatment. In this paper is described a multivariate approach to do segmentation of bladder cystoscopy images, that will be used to automatically detect and improve physician diagnose. Each region can be assumed as a normal distribution with specific parameters, leading to the assumption that the distribution of intensities is a Gaussian Mixture Model (GMM). Region of high grade and low grade tumors, usually appears with higher intensity than normal regions. This paper proposes a Maximum a Posteriori (MAP) approach based on pixel intensities read simultaneously in different color channels from RGB, HSV and CIELab color spaces. The Expectation-Maximization (EM) algorithm is used to estimate the best multivariate GMM parameters. Experimental results show that the proposed method does bladder tumor segmentation into two classes in a more efficient way in RGB even in cases where the tumor shape is not well defined. Results also show that the elimination of component L from CIELab color space does not allow definition of the tumor shape.


Assuntos
Neoplasias da Bexiga Urinária , Algoritmos , Cor , Cistoscopia , Humanos
9.
J Hum Kinet ; 53: 179-187, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28149422

RESUMO

The aim of this study was to compare the values of oxygen uptake (VO2) during and after strength training exercises (STe) and ergometer exercises (Ee), matched for intensity and exercise time. Eight men (24 ± 2.33 years) performed upper and lower body cycling Ee at the individual's ventilatory threshold (VE/VCO2). The STe session included half squats and the bench press which were performed with a load at the individual blood lactate concentration of 4 mmol/l. Both sessions lasted 30 minutes, alternating 50 seconds of effort with a 10 second transition time between upper and lower body work. The averaged overall VO2 between sessions was significantly higher for Ee (24.96 ± 3.6 ml·kg·min-1) compared to STe (21.66 ± 1.77 ml·kg·min-1) (p = 0.035), but this difference was only seen for the first 20 minutes of exercise. Absolute VO2 values between sessions did not reveal differences. There were more statistically greater values in Ee compared to STe, regarding VO2 of lower limbs (25.44 ± 3.84 ml·kg·min-1 versus 21.83 ± 2·24 ml·kg·min-1; p = 0.038) and upper limbs (24.49 ± 3.84 ml·kg·min-1 versus 21.54 ± 1.77 ml·kg·min-1; p = 0.047). There were further significant differences regarding the moment effect (p<0.0001) of both STe and Ee sessions. With respect to the moment × session effect, only VO2 5 minutes into recovery showed significant differences (p = 0.017). In conclusion, although significant increases in VO2 were seen following Ee compared to STe, it appears that the load/intensity, and not the material/equipment used for the execution of an exercise, are variables that best influence oxygen uptake.

10.
Coimbra; s.n; dez. 2013. 61 p. ilus.
Tese em Português | BDENF - Enfermagem | ID: biblio-1418374

RESUMO

O tratamento em contexto comunitário e a redução dos internamentos, já estão previstos pela Lei de Saúde Mental em Portugal, desde 1998. Na realidade atual, porém, existem poucas alternativas aos internamentos em situações agudas de doença psiquiátrica. Neste contexto, e através de uma pesquisa bibliográfica sistematizada, o presente trabalho pretendeu responder à seguinte Questão de Investigação: Qual a evidência científica acerca dos efeitos das equipas de intervenção em crise (EIC) na redução dos internamentos de pessoas com doença mental? Foram identificados 5 artigos na PubMed, referentes ao trabalho das Equipas de Resolução de Crise na Inglaterra e na Noruega. Face à evidência disponível acerca dos resultados de investigação, as equipas de intervenção/resolução de crise - multidisciplinares, com predomínio de enfermeiros especialistas, disponibilidade nalgumas equipas 24 horas por dia, fazendo o acompanhamento e o tratamento intensivo no domicílio de pessoas que, de outra forma, precisariam de ser internadas - reduziram claramente os internamentos, com maior satisfação dos utentes com os serviços, para além dos ganhos na qualidade e relação custo-benefício dos cuidados. Este trabalho procurou também responder a uma outra Questão de Investigação: Qual a viabilidade da criação e implementação de uma EIC no contexto dos serviços de saúde mental no distrito de Coimbra? Através da análise SWAT proposta nas entrevistas a diversas pessoas-chave, conclui-se que essa viabilidade passará pela alteração das políticas de saúde e criação de incentivos, uma vez que o regime atual privilegia o internamento hospitalar em vez do acompanhamento na comunidade.


Assuntos
Resolução de Problemas , Enfermagem Psiquiátrica , Características de Residência , Saúde Mental , Intervenção em Crise , Emergências , Equipe de Respostas Rápidas de Hospitais , Tratamento Psiquiátrico Involuntário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA