Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
2.
J Med Food ; 25(6): 630-635, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35612492

RESUMO

Redox imbalance can lead to irreversible damages to biological functions. In this context, rutin stands out for its antioxidant potential. The objective of this study was to evaluate the acute and chronic effect of rutin on the hepatic redox imbalance. The study was performed according to three different protocols. First, healthy male Swiss mice were divided into two groups: control and rutin, the second of which received chronic oral supplementation of rutin (10 mg/kg). The second involved evaluation of the generation of reactive oxygen species (ROS) by HepG2 cells, incubated or not with rutin (20 and 40 µg/mL) for 3 h. The final protocol involved assessment of the acute effect of rutin (10 mg/kg) in mice with oxidative stress induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP). After the in vivo treatments, the livers were collected to analyze the oxidative damage by thiol, and the antioxidant defense by catalase, superoxide dismutase, and glutathione peroxidase. In the HepG2 cells, the following probes were employed to assess the ROS production: dichlorofluorescein, MitoSOX, dihydroethidium, and Amplex Red. Rutin administered chronically improved the antioxidant defense in healthy animals, and when administered acutely both inhibited the increased production of ROS in HepG2 cells and improved the redox imbalance parameters in mice with induced oxidative stress. This study suggests rutin as a protective agent for restoration of hepatic redox homeostasis in redox injury induced by ABAP in Swiss mice and HelpG2 cells.


Assuntos
Antioxidantes , Rutina , Amidinas , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Rutina/metabolismo , Rutina/farmacologia
3.
Saudi Pharm J ; 29(9): 1061-1069, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34588851

RESUMO

The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.

4.
Nutr Hosp ; 37(4): 763-769, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32686442

RESUMO

INTRODUCTION: Objective: the purpose of this study was to investigate the effects of Chrysobalanus icaco on adiposity and its mechanism of action in the gene and protein expression of acetyl-CoA carboxylase (ACC), a key enzyme in lipogenesis. Method: Wistar rats were divided into a regular or control group (CG) and a high-fat diet (HFD) group. HFD was treated with saline or aqueous extract of Chrysobalanus icaco (AECI) for four weeks. Body weight and food intake were assessed. Subcutaneous, retroperitoneal and periepididymal adipose tissue samples were collected and weighed. Adipocytes from periepididymal tissue were isolated and analyzed. The gene and protein expression of ACC in subcutaneous tissue was determined. Results: AECI showed no effect on intake or body weight. However, the weight of the fat pads and the gene and protein expression of ACC were lower, and glucose tolerance was improved. Conclusion: the aqueous extract of Chrysobalanus icaco proved beneficial for the treatment of obesity, preventing fat storage and improving glycemic homeostasis.


INTRODUCCIÓN: Objetivo: el objetivo de este estudio fue investigar los efectos del extracto acuoso de Chrysobalanus icaco (AECI) en la adiposidad y su mecanismo de acción en la expresión génica y proteica de la acetil-CoA-carboxilasa (ACC), una enzima clave para la lipogénesis. Métodos: se usaron ratones macho Wistar que se asignaron a una dieta estándar de control (CG) o a una rica en grasa (HFD). La HFD se trató con solución salina o con extracto acuoso de Chrysobalanus icaco (AECI) durante cuatro semanas. Se evaluaron el peso corporal y el consumo alimentario. Se aislaron y analizaron muestras de tejido adiposo subcutáneo, retroperitoneal y periepididímico. Se determinó la expresión génica y proteica de ACC en el tejido subcutáneo. Resultados: el AECI no mostró ningún efecto sobre la ingesta de alimento y tampoco sobre el peso corporal. Sin embargo, el tratamiento con AECI redujo el peso de los tejidos adiposos y la expresión génica y proteica de ACC, y mejoró también la tolerancia a la glucosa. Conclusión: Chrysobalanus icaco (AECI) resultó ser beneficioso para el tratamiento de la obesidad, previniendo el almacenamiento de grasa y mejorando la homeostasis glucémica.


Assuntos
Adiposidade/efeitos dos fármacos , Chrysobalanaceae , Dieta Hiperlipídica , Extratos Vegetais/farmacologia , Acetil-CoA Carboxilase/biossíntese , Acetil-CoA Carboxilase/genética , Adiposidade/genética , Animais , Peso Corporal , Expressão Gênica , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA