Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18480, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323845

RESUMO

An important function of the visual system is to represent 3D scene structure from a sequence of 2D images projected onto the retinae. During observer translation, the relative image motion of stationary objects at different distances (motion parallax) provides potent depth information. However, if an object moves relative to the scene, this complicates the computation of depth from motion parallax since there will be an additional component of image motion related to scene-relative object motion. To correctly compute depth from motion parallax, only the component of image motion caused by self-motion should be used by the brain. Previous experimental and theoretical work on perception of depth from motion parallax has assumed that objects are stationary in the world. Thus, it is unknown whether perceived depth based on motion parallax is biased by object motion relative to the scene. Naïve human subjects viewed a virtual 3D scene consisting of a ground plane and stationary background objects, while lateral self-motion was simulated by optic flow. A target object could be either stationary or moving laterally at different velocities, and subjects were asked to judge the depth of the object relative to the plane of fixation. Subjects showed a far bias when object and observer moved in the same direction, and a near bias when object and observer moved in opposite directions. This pattern of biases is expected if subjects confound image motion due to self-motion with that due to scene-relative object motion. These biases were large when the object was viewed monocularly, and were greatly reduced, but not eliminated, when binocular disparity cues were provided. Our findings establish that scene-relative object motion can confound perceptual judgements of depth during self-motion.


Assuntos
Percepção de Movimento , Fluxo Óptico , Humanos , Disparidade Visual , Movimento (Física) , Sinais (Psicologia) , Viés , Percepção de Profundidade
2.
Curr Opin Physiol ; 16: 8-13, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32968701

RESUMO

Neurophysiological studies of multisensory processing have largely focused on how the brain integrates information from different sensory modalities to form a coherent percept. However, in the natural environment, an important extra step is needed: the brain faces the problem of causal inference, which involves determining whether different sources of sensory information arise from the same environmental cause, such that integrating them is advantageous Behavioral and computational studies have provided a strong foundation for studying causal inference, but studies of its neural basis have only recently been undertaken. This review focuses on recent advances regarding how the brain infers the causes of sensory inputs and uses this information to make robust perceptual estimates.

3.
Elife ; 82019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31050648

RESUMO

The rate and temporal pattern of neural spiking each have the potential to influence computation. In the cerebellum, it has been hypothesized that the irregularity of interspike intervals in Purkinje cells affects their ability to transmit information to downstream neurons. Accordingly, during oculomotor behavior in mice and rhesus monkeys, mean irregularity of Purkinje cell spiking varied with mean eye velocity. However, moment-to-moment variations revealed a tight correlation between eye velocity and spike rate, with no additional information conveyed by spike irregularity. Moreover, when spike rate and irregularity were independently controlled using optogenetic stimulation, the eye movements elicited were well-described by a linear population rate code with 3-5 ms temporal precision. Biophysical and random-walk models identified biologically realistic parameter ranges that determine whether spike irregularity influences responses downstream. The results demonstrate cerebellar control of movements through a remarkably rapid rate code, with no evidence for an additional contribution of spike irregularity.


Assuntos
Potenciais de Ação , Movimentos Oculares , Células de Purkinje/fisiologia , Animais , Macaca mulatta , Camundongos , Optogenética , Estimulação Luminosa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA