Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Viruses ; 15(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851647

RESUMO

The ongoing COVID-19 pandemic caused by SARS-CoV-2 infections has quickly developed into a global public health threat. COVID-19 patients show distinct clinical features, and in some cases, during the severe stage of the condition, the disease severity leads to an acute respiratory disorder. In spite of several pieces of research in this area, the molecular mechanisms behind the development of disease severity are still not clearly understood. Recent studies demonstrated that SARS-CoV-2 alters the host cell splicing and transcriptional response to overcome the host immune response that provides the virus with favorable conditions to replicate efficiently within the host cells. In several disease conditions, aberrant splicing could lead to the development of novel chimeric transcripts that could promote the functional alternations of the cell. As severe SARS-CoV-2 infection was reported to cause abnormal splicing in the infected cells, we could expect the generation and expression of novel chimeric transcripts. However, no study so far has attempted to check whether novel chimeric transcripts are expressed in severe SARS-CoV-2 infections. In this study, we analyzed several publicly available blood transcriptome datasets of severe COVID-19, mild COVID-19, other severe respiratory viral infected patients, and healthy individuals. We identified 424 severe COVID-19 -specific chimeric transcripts, 42 of which were recurrent. Further, we detected 189 chimeric transcripts common to severe COVID-19 and multiple severe respiratory viral infections. Pathway and gene enrichment analysis of the parental genes of these two subsets of chimeric transcripts reveals that these are potentially involved in immune-related processes, interferon signaling, and inflammatory responses, which signify their potential association with immune dysfunction leading to the development of disease severity. Our study provides the first detailed expression landscape of chimeric transcripts in severe COVID-19 and other severe respiratory viral infections.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Pandemias , Nível de Saúde , Gravidade do Paciente
2.
Wiley Interdiscip Rev RNA ; 14(5): e1777, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36633099

RESUMO

Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA/genética , Neoplasias/genética , Biomarcadores , Transcriptoma , RNA Longo não Codificante/genética
3.
FEBS J ; 290(12): 3128-3144, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36628954

RESUMO

Viral infections can modulate the widespread alternations of cellular splicing, favouring viral replication within the host cells by overcoming host immune responses. However, how SARS-CoV-2 induces host cell differential splicing and affects the landscape of transcript alternation in severe COVID-19 infection remains elusive. Understanding the differential splicing and transcript alternations in severe COVID-19 infection may improve our molecular insights into the SARS-CoV-2 pathogenesis. In this study, we analysed the publicly available blood and lung transcriptome data of severe COVID-19 patients, blood transcriptome data of recovered COVID-19 patients at 12-, 16- and 24-week postinfection and healthy controls. We identified a significant transcript isoform switching in the individual blood and lung RNA-seq data of severe COVID-19-infected patients and 25 common genes that alter their transcript isoform in both blood and lung samples. Altered transcripts show significant loss of the open reading frame, functional domains and switch from coding to noncoding transcript, impacting normal cellular functions. Furthermore, we identified the expression of several novel recurrent chimeric transcripts in the blood samples from severe COVID-19 patients. Moreover, the analysis of the isoform switching into blood samples from recovered COVID-19 patients highlights that there is no significant isoform switching in 16- and 24-week postinfection, and the levels of expressed chimeric transcripts are reduced. This finding emphasizes that SARS-CoV-2 severe infection induces widespread splicing in the host cells, which could help the virus alter the host immune responses and facilitate the viral replication within the host and the efficient translation of viral proteins.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/genética , Pulmão/metabolismo , Transcriptoma , RNA-Seq
4.
Cell Rep ; 41(4): 111539, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288695

RESUMO

Codon usage of each genome is closely correlated with the abundance of tRNA isoacceptors. How codon usage bias is resolved by tRNA post-transcriptional modifications is largely unknown. Here we demonstrate that the N1-methylation of guanosine at position 37 (m1G37) on the 3'-side of the anticodon, while not directly responsible for reading of codons, is a neutralizer that resolves differential decoding of proline codons. A genome-wide suppressor screen of a non-viable Escherichia coli strain, lacking m1G37, identifies proS suppressor mutations, indicating a coupling of methylation with tRNA prolyl-aminoacylation that sets the limit of cell viability. Using these suppressors, where prolyl-aminoacylation is decoupled from tRNA methylation, we show that m1G37 neutralizes differential translation of proline codons by the major isoacceptor. Lack of m1G37 inactivates this neutralization and exposes the need for a minor isoacceptor for cell viability. This work has medical implications for bacterial species that exclusively use the major isoacceptor for survival.


Assuntos
Anticódon , Uso do Códon , Metilação , Sobrevivência Celular/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Códon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina , Prolina/genética
5.
Biology (Basel) ; 11(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892966

RESUMO

Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation to the new environment, they could mutate their genome, which impacts the alternation of the functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species with significant genetic differences in the same species between the two soil types and ecologies. We show that the bacterial community composition has significantly diverged between the two soils; correspondingly, their functions were differentiated in order to adapt to the local ecological stresses. The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of riboswitches, we highlight significant differences in structured non-coding RNAs between the soil bacteria from two divergence soil types, which could be an important driver for functional adaptation. Our study provides new insight into the evolutionary divergence and incipient sympatric speciation of soil bacteria under microclimatic ecological differences.

6.
Vaccines (Basel) ; 10(7)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35891299

RESUMO

Initial clinical trials and surveillance data have shown that the most commonly administered BNT162b2 COVID-19 mRNA vaccine is effective and safe. However, several cases of mRNA vaccine-induced mild to moderate adverse events were recently reported. Here, we report a rare case of myositis after injection of the first dose of BNT162b2 COVID-19 mRNA vaccine into the left deltoid muscle of a 34-year-old, previously healthy woman who presented progressive proximal muscle weakness, progressive dysphagia, and dyspnea with respiratory failure. One month after vaccination, BNT162b2 vaccine mRNA expression was detected in a tissue biopsy of the right deltoid and quadriceps muscles. We propose this case as a rare example of COVID-19 mRNA vaccine-induced myositis. This study comprehensively characterizes the clinical and molecular features of BNT162b2 mRNA vaccine-associated myositis in which the patient was severely affected.

7.
Adv Protein Chem Struct Biol ; 131: 165-176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871889

RESUMO

Fusions of two different genes could lead to the production of chimeric RNAs, which could be translated into novel fusion (or chimeric) proteins. Fusion proteins often act as oncoproteins and drive cancer development, particularly in leukemia and lymphomas. Fusion proteins modify the existing protein-protein interaction (PPI) networks, which could eliminate some PPIs by removing protein domains in such fusions. This alternation of protein interaction networks could impact the signaling pathways and switch on the cancer-promoting activity that could drive the generation of cancer phenotypes and/or loss of controlled apoptosis. Thus, knowledge of the fusion proteins and their protein interaction networks could facilitate a deeper molecular understanding of cancer development, which could help to design new approaches for cancer therapies. Here, we discuss the structural features of fusion proteins and how they impact the PPI networks in cancers. Further, we discuss how to analyze the fusion protein-mediated alternation of PPI networks in cancers.


Assuntos
Neoplasias , Mapas de Interação de Proteínas , Fusão Gênica , Humanos , Neoplasias/metabolismo , RNA/metabolismo , Transdução de Sinais
8.
Cells ; 11(7)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406656

RESUMO

In cancers and other complex diseases, the fusion of two genes can lead to the production of chimeric RNAs, which are associated with disease development. Several recurrent chimeric RNAs are expressed in different cancers and are thus used for clinical cancer diagnosis. Rheumatoid arthritis (RA) is an immune-mediated joint disorder resulting in synovial inflammation and joint destruction. Despite advances in therapy, many patients do not respond to treatment and present persistent inflammation. Understanding the landscape of chimeric RNA expression in RA patients could provide a better insight into RA pathogenesis, which might provide better treatment strategies and tailored therapies. Accordingly, we analyzed the publicly available RNA-seq data of synovium tissue from 151 RA patients and 28 healthy controls and were able to identify 37 recurrent chimeric RNAs found to be expressed in at least 3 RA samples. Furthermore, the parental genes of these 37 recurrent chimeric RNAs were found to be differentially expressed and enriched in immune-related processes, such as adaptive immune response and the positive regulation of B-cell activation. Interestingly, the appearance of 5 coding and 23 non-coding chimeric RNAs might be associated with regulating their parental gene expression, leading to the generation of dysfunctional immune responses, such as inflammation and bone destruction. Therefore, in this paper, we present the first study to demonstrate the novel chimeric RNAs that are highly expressed and functional in RA.


Assuntos
Artrite Reumatoide , Humanos , Inflamação/metabolismo , RNA/metabolismo , Membrana Sinovial/metabolismo
9.
Vaccines (Basel) ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35062735

RESUMO

The Bacillus Calmette-Guérin (BCG) vaccine affords indirect protection against COVID-19, which is presumably due to priming of the innate immune system. It was hypothesized that the live attenuated Varicella Zoster (LAVZ) vaccine, recommended for the elderly population, would also protect against COVID-19 infection. A retrospective population-based cross-sectional study was conducted using the Leumit Health Services (LHS) database. LAVZ-vaccinated patients were matched with controls based on a propensity score model using 1:9 nearest-neighbor matching. Matching was based on age, gender, and the presence of some chronic disorders, which were selected according to their association with COVID-19 infection. Multivariate logistic regression analyses, adjusted for sex, age, smoking status, comorbidities, and chronic medications associated with COVID-19 risk, were used to estimate the association between LAVZ vaccination and COVID-19 RT-PCR results. Subjects (625) vaccinated with LAVZ and RT-PCR-tested for COVID-19 were identified. After 1:9 matching of subjects who received the LAVZ vaccine, 6250 subjects were included in the study. Multivariate logistic regression analysis demonstrated a significant and independent negative association between having received the LAVZ vaccine and the likelihood of COVID-19 infection (adjusted OR = 0.47 (95% CI 0.33-0.69, p < 0.001)). This association was further strengthened after separate analysis based on the time of LAVZ vaccination before COVID-19 RT-PCR testing. Individuals aged ≥50 years vaccinated with LAVZ had a decreased likelihood of being tested positive for COVID-19.

10.
FEBS Open Bio ; 12(1): 106-117, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34608759

RESUMO

Several recent studies have demonstrated that low plasma 25(OH) vitamin D levels are associated with the risk of COVID-19 infection. The primary source of vitamin D production in humans is environmental UV radiation. In many viral respiratory diseases, peak infection rates are observed during winter due to reduced UV exposure and low temperatures. In Europe, the second wave of COVID-19 began early in the winter of 2020. Investigating the impact of seasonal temperature and UV exposure on COVID-19 transmission could thus aid in prevention and intervention. As such, we first performed a comprehensive meta-analysis of all related published literature based on the association between vitamin D and COVID-19, which supported the hypothesis that the low vitamin D level is a critical risk factor for COVID-19 infection. Next, to understand the potential impact of seasonal UV and temperature levels on COVID-19 cases, we analyzed meteorological data and daily COVID-19 cases per million in the populations of 26 European countries. We observed that low temperature, UV index, and cloud-free vitamin D UV dose (UVDVF) levels are negatively correlated with COVID-19 prevalence in Europe. Furthermore, a distributed lag nonlinear model was used to assess the nonlinear delayed effects of individual seasonal factors on COVID-19 cases. Such analysis highlighted the significantly delayed impact of UVDVF on the cumulative relative risk of COVID-19 infection. The findings of this study suggest that low UV exposure can affect the required production of vitamin D in the body, which substantially influences the dynamics of COVID-19 transmission and severity.


Assuntos
Algoritmos , COVID-19/transmissão , Modelos Teóricos , Estações do Ano , Raios Ultravioleta , Vitamina D/sangue , COVID-19/epidemiologia , COVID-19/virologia , Europa (Continente)/epidemiologia , Humanos , Metanálise como Assunto , Estudos Observacionais como Assunto , Pandemias , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Temperatura
11.
Trends Genet ; 38(1): 4-7, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34579972

RESUMO

Chimeric RNAs are generated by the fusion of the exons or introns of two genes. The generation of chimeric RNAs is important for the functional expansion of cells. Here, we describe the functional implications of chimeric RNAs for generating phenotypic plasticity from an evolutionary perspective.


Assuntos
Fusão Gênica , RNA , Adaptação Fisiológica , Evolução Biológica , Éxons , Humanos , RNA/genética
12.
Mol Oncol ; 16(10): 2098-2114, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34875133

RESUMO

Glioblastoma (GBM) is the most common type of glioma and is uniformly fatal. Currently, tumour heterogeneity and mutation acquisition are major impedances for tailoring personalized therapy. We collected blood and tumour tissue samples from 25 GBM patients and 25 blood samples from healthy controls. Cell-free DNA (cfDNA) was extracted from the plasma of GBM patients and from healthy controls. Tumour DNA was extracted from fresh tumour samples. Extracted DNA was sequenced using a whole-genome sequencing procedure. We also collected 180 tumour DNA datasets from GBM patients publicly available at the TCGA/PANCANCER project. These data were analysed for mutations and gene-gene fusions that could be potential druggable targets. We found that plasma cfDNA concentrations in GBM patients were significantly elevated (22.6 ± 5 ng·mL-1 ), as compared to healthy controls (1.4 ± 0.4 ng·mL-1 ) of the same average age. We identified unique mutations in the cfDNA and tumour DNA of each GBM patient, including some of the most frequently mutated genes in GBM according to the COSMIC database (TP53, 18.75%; EGFR, 37.5%; NF1, 12.5%; LRP1B, 25%; IRS4, 25%). Using our gene-gene fusion database, ChiTaRS 5.0, we identified gene-gene fusions in cfDNA and tumour DNA, such as KDR-PDGFRA and NCDN-PDGFRA, which correspond to previously reported alterations of PDGFRA in GBM (44% of all samples). Interestingly, the PDGFRA protein fusions can be targeted by tyrosine kinase inhibitors such as imatinib, sunitinib, and sorafenib. Moreover, we identified BCR-ABL1 (in 8% of patients), COL1A1-PDGFB (8%), NIN-PDGFRB (8%), and FGFR1-BCR (4%) in cfDNA of patients, which can be targeted by analogues of imatinib. ROS1 fusions (CEP85L-ROS1 and GOPC-ROS1), identified in 8% of patient cfDNA, might be targeted by crizotinib, entrectinib, or larotrectinib. Thus, our study suggests that integrated analysis of cfDNA plasma concentration, gene mutations, and gene-gene fusions can serve as a diagnostic modality for distinguishing GBM patients who may benefit from targeted therapy. These results open new avenues for precision medicine in GBM, using noninvasive liquid biopsy diagnostics to assess personalized patient profiles. Moreover, repeated detection of druggable targets over the course of the disease may provide real-time information on the evolving molecular landscape of the tumour.


Assuntos
Ácidos Nucleicos Livres , Glioblastoma , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Proteínas do Citoesqueleto/genética , DNA de Neoplasias , Fusão Gênica , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mesilato de Imatinib , Mutação/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética
13.
NAR Genom Bioinform ; 3(4): lqab112, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34859212

RESUMO

Fusion genes or chimeras typically comprise sequences from two different genes. The chimeric RNAs of such joined sequences often serve as cancer drivers. Identifying such driver fusions in a given cancer or complex disease is important for diagnosis and treatment. The advent of next-generation sequencing technologies, such as DNA-Seq or RNA-Seq, together with the development of suitable computational tools, has made the global identification of chimeras in tumors possible. However, the testing of over 20 computational methods showed these to be limited in terms of chimera prediction sensitivity, specificity, and accurate quantification of junction reads. These shortcomings motivated us to develop the first 'reference-based' approach termed ChiTaH (Chimeric Transcripts from High-throughput sequencing data). ChiTaH uses 43,466 non-redundant known human chimeras as a reference database to map sequencing reads and to accurately identify chimeric reads. We benchmarked ChiTaH and four other methods to identify human chimeras, leveraging both simulated and real sequencing datasets. ChiTaH was found to be the most accurate and fastest method for identifying known human chimeras from simulated and sequencing datasets. Moreover, especially ChiTaH uncovered heterogeneity of the BCR-ABL1 chimera in both bulk and single-cells of the K-562 cell line, which was confirmed experimentally.

15.
Cancers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34503137

RESUMO

Gene fusions can give rise to somatic alterations in cancers. Fusion genes have the potential to create chimeric RNAs, which can generate the phenotypic diversity of cancer cells, and could be associated with novel molecular functions related to cancer cell survival and proliferation. The expression of chimeric RNAs in cancer cells might impact diverse cancer-related functions, including loss of apoptosis and cancer cell plasticity, and promote oncogenesis. Due to their recurrence in cancers and functional association with oncogenic processes, chimeric RNAs are considered biomarkers for cancer diagnosis. Several recent studies demonstrated that chimeric RNAs could lead to the generation of new functionality for the resistance of cancer cells against drug therapy. Therefore, targeting chimeric RNAs in drug resistance cancer could be useful for developing precision medicine. So, understanding the functional impact of chimeric RNAs in cancer cells from an evolutionary perspective will be helpful to elucidate cancer evolution, which could provide a new insight to design more effective therapies for cancer patients in a personalized manner.

16.
NAR Genom Bioinform ; 3(3): lqab074, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34458728

RESUMO

Many human genes are transcribed from both strands and produce sense-antisense gene pairs. Sense-antisense (SAS) chimeric transcripts are produced upon the coalescing of exons/introns from both sense and antisense transcripts of the same gene. SAS chimera was first reported in prostate cancer cells. Subsequently, numerous SAS chimeras have been reported in the ChiTaRS-2.1 database. However, the landscape of their expression in human cells and functional aspects are still unknown. We found that longer palindromic sequences are a unique feature of SAS chimeras. Structural analysis indicates that a long hairpin-like structure formed by many consecutive Watson-Crick base pairs appears because of these long palindromic sequences, which possibly play a similar role as double-stranded RNA (dsRNA), interfering with gene expression. RNA-RNA interaction analysis suggested that SAS chimeras could significantly interact with their parental mRNAs, indicating their potential regulatory features. Here, 267 SAS chimeras were mapped in RNA-seq data from 16 healthy human tissues, revealing their expression in normal cells. Evolutionary analysis suggested the positive selection favoring sense-antisense fusions that significantly impacted the evolution of their function and structure. Overall, our study provides detailed insight into the expression landscape of SAS chimeras in human cells and identifies potential regulatory features.

17.
FEBS Open Bio ; 11(9): 2507-2524, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196123

RESUMO

Here, we introduce a novel 'evolution of protein domains' (EvoProDom) model for describing the evolution of proteins based on the 'mix and merge' of protein domains. We assembled and integrated genomic and proteomic data comprising protein domain content and orthologous proteins from 109 organisms. In EvoProDom, we characterized evolutionary events, particularly, translocations, as reciprocal exchanges of protein domains between orthologous proteins in different organisms. We showed that protein domains that translocate with highly frequency are generated by transcripts enriched in trans-splicing events, that is, the generation of novel transcripts from the fusion of two distinct genes. In EvoProDom, we describe a general method to collate orthologous protein annotation from KEGG, and protein domain content from protein sequences using tools such as KoFamKOAL and Pfam. To summarize, EvoProDom presents a novel model for protein evolution based on the 'mix and merge' of protein domains rather than DNA-based evolution models. This confers the advantage of considering chromosomal alterations as drivers of protein evolutionary events.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Software , Algoritmos , Bases de Dados de Proteínas , Humanos , Anotação de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas/metabolismo , Proteômica/métodos , Fluxo de Trabalho
19.
Viruses ; 13(3)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802569

RESUMO

The recently emerged SARS-CoV-2 virus is responsible for the ongoing COVID-19 pandemic that has rapidly developed into a global public health threat. Patients severely affected with COVID-19 present distinct clinical features, including acute respiratory disorder, neutrophilia, cytokine storm, and sepsis. In addition, multiple pro-inflammatory cytokines are found in the plasma of such patients. Transcriptome sequencing of different specimens obtained from patients suffering from severe episodes of COVID-19 shows dynamics in terms of their immune responses. However, those host factors required for SARS-CoV-2 propagation and the underlying molecular mechanisms responsible for dysfunctional immune responses during COVID-19 infection remain elusive. In the present study, we analyzed the mRNA-long non-coding RNA (lncRNA) co-expression network derived from publicly available SARS-CoV-2-infected transcriptome data of human lung epithelial cell lines and bronchoalveolar lavage fluid (BALF) from COVID-19 patients. Through co-expression network analysis, we identified four differentially expressed lncRNAs strongly correlated with genes involved in various immune-related pathways crucial for cytokine signaling. Our findings suggest that the aberrant expression of these four lncRNAs can be associated with cytokine storms and anti-viral responses during severe SARS-CoV-2 infection of the lungs. Thus, the present study uncovers molecular interactions behind the cytokine storm activation potentially responsible for hyper-inflammatory responses in critical COVID-19 patients.


Assuntos
COVID-19/genética , COVID-19/imunologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , SARS-CoV-2/fisiologia , Líquido da Lavagem Broncoalveolar/imunologia , COVID-19/virologia , Citocinas/genética , Citocinas/imunologia , Redes Reguladoras de Genes , Humanos , Pulmão/imunologia , Pulmão/virologia , RNA Longo não Codificante/imunologia , RNA Mensageiro/imunologia , SARS-CoV-2/genética
20.
FEBS J ; 288(17): 5201-5223, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33756061

RESUMO

Circulating animal coronaviruses occasionally infect humans. The SARS-CoV-2 is responsible for the current worldwide outbreak of COVID-19 that has resulted in 2 112 844 deaths as of late January 2021. We compared genetic code preferences in 496 viruses, including 34 coronaviruses and 242 corresponding hosts, to uncover patterns that distinguish single- and 'promiscuous' multiple-host-infecting viruses. Based on a codon usage preference score, promiscuous viruses were shown to significantly employ nonoptimal codons, namely codons that involve 'wobble' binding to anticodons, as compared to single-host viruses. The codon adaptation index (CAI) and the effective number of codons (ENC) were calculated for all viruses and hosts. Promiscuous viruses were less adapted hosts vs single-host viruses (P-value = 4.392e-11). All coronaviruses exploit nonoptimal codons to infect multiple hosts. We found that nonoptimal codon preferences at the beginning of viral coding sequences enhance the translational efficiency of viral proteins within the host. Finally, coronaviruses lack endogenous RNA degradation motifs to a significant degree, thereby increasing viral mRNA burden and infection load. To conclude, we found that promiscuously infecting coronaviruses prefer nonoptimal codon usage to remove degradation motifs from their RNAs and to dramatically increase their viral RNA production rates.


Assuntos
COVID-19/genética , Uso do Códon/genética , Evolução Molecular , SARS-CoV-2/genética , Animais , COVID-19/virologia , Códon/genética , Biologia Computacional , Código Genético/genética , Genoma Viral/genética , Humanos , Filogenia , RNA Mensageiro/genética , SARS-CoV-2/patogenicidade , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA