Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nanoscale Adv ; 4(19): 4175-4184, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36285223

RESUMO

Friction force microscopy measurements reveal a dramatic difference of a factor 3 between the friction forces experienced on single-monolayer graphene on top of oxidized and unoxidized copper substrates. We associate this difference with the strong and weak adhesion that the graphene experiences on these two substrates, respectively, but argue that it is too large to be ascribed either to a difference in contact area or to a difference in contact commensurability or even to a combination of these two effects. We use density functional theory to show a significant increase in the chemical reactivity of graphene when it is curved.

2.
Sci Rep ; 11(1): 19964, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620964

RESUMO

After more than a century of detailed investigations into sliding friction, we have not arrived yet at a basic understanding of energy dissipation, even for the simple geometry of a rigid slider moving over a perfectly periodic counter surface. In this article, we use a first-principles-based analysis to establish the atomistic mechanisms of frictional energy dissipation for a rigid object that moves continuously in the periodic surface potential landscape of a solid with vibrational degrees of freedom. We identify two mechanisms that can be viewed as (i) the continuous pumping of energy into the resonant modes, if these exist, and (ii) the destructive interference of the force contributions introduced by all excited phonon modes. These mechanisms act already in a purely dynamic system that includes independent, non-interacting phonon modes, and they manifest irreversibility as a kind of "dynamical stochastization". In contrast to wide-spread views, we show that the transformation of mechanical energy into heat, that always takes place in real systems due to the coupling between phonon modes, can play only a minor role in the appearance of friction, if any. This insight into the microscopic mechanisms of energy dissipation opens a new, direct way towards true control over friction.

3.
Phys Chem Chem Phys ; 19(12): 8485-8495, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28287221

RESUMO

In situ surface X-ray diffraction and transmission electron microscopy at 1 bar show massive material transport of platinum during high-temperature NO reduction with H2. A Pt(110) single-crystal surface shows a wide variety of surface reconstructions and extensive faceting of the surface. Pt nanoparticles change their morphology depending on the gas composition: They are faceted in hydrogen-rich environments, but are more spherical in NO-rich environments, indicating the formation of vicinal surfaces. We conclude that high coverage of NO combined with sufficient mobility of platinum surface atoms is the driving force for the formation of steps on both flat surfaces and nanoparticles. Since the steps that are introduced provide strongly coordinating adsorption sites with potential catalytic benefits, this may be of direct practical relevance for the performance of catalytic nanoparticles under high-pressure conditions.

4.
Rev Sci Instrum ; 86(3): 033706, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832237

RESUMO

An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

5.
Rev Sci Instrum ; 85(8): 083703, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173272

RESUMO

To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

6.
J Phys Chem Lett ; 3(6): 678-82, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26286272

RESUMO

The active phase of Pd during methane oxidation is a long-standing puzzle, which, if solved, could provide routes for design of improved catalysts. Here, density functional theory and in situ surface X-ray diffraction are used to identify and characterize atomic sites yielding high methane conversion. Calculations are performed for methane dissociation over a range of Pd and PdOx surfaces and reveal facile dissociation on either under-coordinated Pd sites in PdO(101) or metallic surfaces. The experiments show unambiguously that high methane conversion requires sufficiently thick PdO(101) films or metallic Pd, in full agreement with the calculations. The established link between high activity and atomic structure enables rational design of improved catalysts.

7.
Phys Chem Chem Phys ; 13(29): 13167-71, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21681289

RESUMO

The surface structure of Pd(100) during CO oxidation was measured using a combination of a flow reactor and in situ surface X-ray diffraction coupled to a large-area 2-dimensional detector. The surface structure was measured for P(O(2))/P(CO) ratios between 0.6 and 10 at a fixed total gas pressure of 200 mbar and a fixed CO pressure of 10 ± 1 mbar. In conjunction with the surface structure the reactivity of the surface was also determined. For all P(O(2))/P(CO) ratios the surface was found to oxidize above a certain temperature. Three different types of oxides were observed: the surface oxide, an epitaxial layer of bulk-like PdO, and a non-epitaxial layer of bulk-like PdO. As soon as an oxide was present the reactivity of the surface was found to be mass transfer limited by the flux of CO molecules reaching the surface.

8.
Rev Sci Instrum ; 81(4): 043702, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20441340

RESUMO

The high speed performance of a scanning probe microscope (SPM) is improved if a microelectromechanical systems (MEMS) device is employed for the out-of-plane scanning motion. We have carried out experiments with MEMS high-speed z-scanners (189 kHz fundamental resonance frequency) in both atomic force microscope and scanning tunneling microscope modes. The experiments show that with the current MEMS z-scanner, lateral tip speeds of 5 mm/s can be achieved with full feedback on surfaces with significant roughness. The improvement in scan speed, obtained with MEMS scanners, increases the possibilities for SPM observations of dynamic processes. Even higher speed MEMS scanners with fundamental resonance frequencies in excess of a megahertz are currently under development.


Assuntos
Sistemas Microeletromecânicos/instrumentação , Microscopia de Varredura por Sonda/instrumentação , Simulação por Computador , Desenho de Equipamento , Retroalimentação , Análise de Elementos Finitos , Microscopia de Força Atômica/instrumentação , Microscopia Eletrônica de Varredura/instrumentação , Microscopia de Tunelamento/instrumentação , Movimento (Física) , Fatores de Tempo
9.
Ultramicroscopy ; 110(6): 599-604, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20334976

RESUMO

Scanning probe microscopy is a frequently used nanometer-scale surface investigation technique. Unfortunately, its applicability is limited by the relatively low image acquisition speed, typically seconds to minutes per image. Higher imaging speeds are desirable for rapid inspection of samples and for the study of a range of dynamic surface processes, such as catalysis and crystal growth. We have designed a new high-speed scanning probe microscope (SPM) based on micro-electro mechanical systems (MEMS). MEMS are small, typically micrometer size devices that can be designed to perform the scanning motion required in an SPM system. These devices can be optimized to have high resonance frequencies (up to the MHz range) and have very low mass (10(-11)kg). Therefore, MEMS can perform fast scanning motion without exciting resonances in the mechanical loop of the SPM, and hence scan the surface without causing the image distortion from which conventional piezo scanners suffer. We have designed a MEMS z-scanner which we have integrated in commercial AFM (atomic force microscope) and STM (scanning tunneling microscope) setups. We show the first successful AFM experiments.

10.
Rev Sci Instrum ; 81(1): 014101, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20113115

RESUMO

A versatile instrument for the in situ study of catalyst surfaces by surface x-ray diffraction and grazing incidence small angle x-ray scattering in a 13 ml flow reactor combined with reaction product analysis by mass spectrometry has been developed. The instrument bridges the so-called "pressure gap" and "materials gap" at the same time, within one experimental setup. It allows for the preparation and study of catalytically active single crystal surfaces and is also equipped with an evaporator for the deposition of thin, pure metal films, necessary for the formation of small metal particles on oxide supports. Reactions can be studied in flow mode and batch mode in a pressure range of 100-1200 mbar and temperatures up to 950 K. The setup provides a unique combination of sample preparation, characterization, and in situ experiments where the structure and reactivity of both single crystals and supported nanoparticles can be simultaneously determined.

11.
Phys Rev Lett ; 101(3): 036101, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18764266

RESUMO

The behavior of water under extreme confinement and, in particular, the lubrication properties under such conditions are subjects of long-standing controversy. Using a dedicated, high-resolution friction force microscope, scanning a sharp tungsten tip over a graphite surface, we demonstrate that water nucleating between the tip and the surface due to capillary condensation rapidly transforms into crystalline ice at room temperature. At ultralow scan speeds and modest relative humidities, we observe that the tip exhibits stick-slip motion with a period of 0.38+/-0.03 nm, very different from the graphite lattice. We interpret this as the consequence of the repeated sequence of shear-induced fracture and healing of the crystalline condensate. This phenomenon causes a significant increase of the friction force and introduces relaxation time scales of seconds for the rearrangements after shearing.

12.
Phys Rev Lett ; 99(16): 166102, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995270

RESUMO

We analyze an advanced two-spring model with an ultralow effective tip mass to predict nontrivial and physically rich "fine structure" in the atomic stick-slip motion in friction force microscopy (FFM) experiments. We demonstrate that this fine structure is present in recent, puzzling experiments. This shows that the tip apex can be completely or partially delocalized, thus shedding new light on what is measured in FFM and, possibly, what can happen with the asperities that establish the contact between macroscopic sliding bodies.

13.
Phys Rev Lett ; 97(16): 166103, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17155416

RESUMO

Atomic force microscopy provides direct atomic-scale access to friction. In this paper, unexpected and potentially dramatic consequences of the tip elasticity are discussed. Under certain natural conditions an essentially new, nontrivial regime can be entered. Although the tip appears to perform typical stick-slip motion, the tip-surface contact is fully "lubricated" by fast thermal motion of the tip apex. The interpretation of the observations needs to be changed completely in this case.

14.
Phys Rev Lett ; 96(16): 166103, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16712250

RESUMO

We present atomic-scale friction force measurements that strongly suggest that the capillary condensation of water between a tungsten tip and a graphite surface leads to the formation of ice at room temperature. This phenomenon increases the friction force, introduces a short-term memory in the form of an elastic response against shearing, and allows us to "write" a temporary line of ice on a hydrophobic surface. Rearrangements of the condensate are shown to take place on a surprisingly slow time scale of seconds.

15.
Phys Rev Lett ; 95(25): 255505, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16384470

RESUMO

We present the first structure determination by surface x-ray diffraction during the restructuring of a model catalyst under reaction conditions, i.e., at high pressure and high temperature, and correlate the restructuring with a change in catalytic activity. We have analyzed the Pt(110) surface during CO oxidation at pressures up to 0.5 bar and temperatures up to 625 K. Depending on the pressure ratio, we find three well-defined structures: namely, (i) the bulk-terminated Pt(110) surface, (ii) a thin, commensurate oxide, and (iii) a thin, incommensurate oxide. The commensurate oxide only appears under reaction conditions, i.e., when both and CO are present and at sufficiently high temperatures. Density functional theory calculations indicate that the commensurate oxide is stabilized by carbonate ions (CO3(2-)). Both oxides have a substantially higher catalytic activity than the bulk-terminated Pt surface.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 2): 065101, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16089798

RESUMO

Atomic-scale friction, as accessed in tip-based experiments, is investigated theoretically in the full range of surface corrugations, temperatures, and velocities. Emphasis is given to the regime of thermal drift, when the regular stick-slip behavior is completely ruined by thermal effects. The possibility of nearly vanishing friction ("thermolubricity") is predicted even for strong (overcritical) surface corrugations, when traditional models would predict significant friction. The manifestation of this effect in recently published experimental data is demonstrated.

17.
FEBS Lett ; 560(1-3): 109-14, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14988007

RESUMO

The conductivity of two photosynthetic protein-pigment complexes, a light harvesting 2 complex and a reaction center, was measured with an atomic force microscope capable of performing electrical measurements. Current-voltage measurements were performed on complexes embedded in their natural environment. Embedding the complexes in lipid bilayers made it possible to discuss the different conduction behaviors of the two complexes in light of their atomic structure.


Assuntos
Proteínas de Bactérias/química , Elétrons , Bicamadas Lipídicas/química , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/efeitos da radiação , Proteínas de Bactérias/ultraestrutura , Condutividade Elétrica , Transferência de Energia , Microscopia de Força Atômica , Complexo de Proteína do Fotossistema II/ultraestrutura , Rhodobacter sphaeroides/química , Rodopseudomonas/química , Especificidade da Espécie
18.
Phys Rev Lett ; 91(2): 026101, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12906493

RESUMO

We report the in situ investigation of grain growth and grain boundary migration, performed with a variable-temperature scanning tunneling microscope (STM) on a polycrystalline gold film. Atomic step resolution allowed us to identify the individual grains and, thus, also the grain boundaries. Our special, thermal-drift-compensated STM design made it possible to follow the same sample area over large temperature intervals. In this way, we have directly observed grain boundary migration and grain growth. In a first quantitative analysis we correlate the observed, unexpected changes in surface roughness with the evolution of the grain and grain boundary configuration.

19.
Phys Rev Lett ; 89(4): 046101, 2002 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-12144490

RESUMO

We have used a novel, high-pressure high-temperature scanning tunneling microscope, which is set up as a flow reactor, to determine simultaneously the surface structure and the reactivity of a Pt(110) model catalyst at semirealistic reaction conditions for CO oxidation. By controlled switching from a CO-rich to an O2-rich flow and vice versa, we can reversibly oxidize and reduce the platinum surface. The formation of the surface oxide has a dramatic effect on the CO2 production rate. Our results show that there is a strict one-to-one correspondence between the surface structure and the catalytic activity, and suggest a reaction mechanism which is not observed at low pressures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA