Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 9(3): 416-426, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38224292

RESUMO

Memristive devices have been demonstrated to exhibit quantum conductance effects at room temperature. In these devices, a detailed understanding of the relationship between electrochemical processes and ionic dynamic underlying the formation of atomic-sized conductive filaments and corresponding electronic transport properties in the quantum regime still represents a challenge. In this work, we report on quantum conductance effects in single memristive Ag nanowires (NWs) through a combined experimental and simulation approach that combines advanced classical molecular dynamics (MD) algorithms and quantum transport simulations (DFT). This approach provides new insights on quantum conductance effects in memristive devices by unravelling the intrinsic relationship between electronic transport and atomic dynamic reconfiguration of the nanofilment, by shedding light on deviations from integer multiples of the fundamental quantum of conductance depending on peculiar dynamic trajectories of nanofilament reconfiguration and on conductance fluctuations relying on atomic rearrangement due to thermal fluctuations.

2.
Sci Rep ; 13(1): 17003, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813937

RESUMO

Memristive devices that rely on redox-based resistive switching mechanism have attracted great attention for the development of next-generation memory and computing architectures. However, a detailed understanding of the relationship between involved materials, interfaces, and device functionalities still represents a challenge. In this work, we analyse the effect of electrode metals on resistive switching functionalities of NbOx-based memristive cells. For this purpose, the effect of Au, Pt, Ir, TiN, and Nb top electrodes was investigated in devices based on amorphous NbOx grown by anodic oxidation on a Nb substrate exploited also as counter electrode. It is shown that the choice of the metal electrode regulates electronic transport properties of metal-insulator interfaces, strongly influences the electroforming process, and the following resistive switching characteristics. Results show that the electronic blocking character of Schottky interfaces provided by Au and Pt metal electrodes results in better resistive switching performances. It is shown that Pt represents the best choice for the realization of memristive cells when the NbOx thickness is reduced, making possible the realization of memristive cells characterised by low variability in operating voltages, resistance states and with low device-to-device variability. These results can provide new insights towards a rational design of redox-based memristive cells.

3.
Sci Rep ; 13(1): 9315, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291201

RESUMO

We report on the characterization of NbTi films at [Formula: see text] 11 GHz and in DC magnetic fields up to 4 T, performed by means of the coplanar waveguide resonator technique, providing quantitative information about the penetration depth, the complex impedance, and the vortex-motion-induced complex resistivity. This kind of characterization is essential for the development of radiofrequency cavity technology. To access the vortex-pinning parameters, the complex impedance was analyzed within the formalism of the Campbell penetration depth. Measurements in this frequency range allowed us to determine the complete set of vortex-pinning parameters and the flux flow resistivity, both analyzed and discussed in the framework of high-frequency vortex dynamics models. The analysis also benefits from the comparison with results obtained by a dielectric-loaded resonator technique on similar samples and by other ancillary structural and electromagnetic characterization techniques that provide us with a comprehensive picture of the material. It turns out that the normalized flux flow resistivity follows remarkably well the trend predicted by the time dependent Ginzburg-Landau theory, while the pinning constant exhibits a decreasing trend with the field which points to a collective pinning regime.


Assuntos
Filmes Cinematográficos , Tioinosina , Impedância Elétrica , Campos Magnéticos
4.
Phys Chem Chem Phys ; 25(21): 14766-14777, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37145117

RESUMO

Memristive devices based on the resistive switching mechanism are continuously attracting attention in the framework of neuromorphic computing and next-generation memory devices. Here, we report on a comprehensive analysis of the resistive switching properties of amorphous NbOx grown by anodic oxidation. Besides a detailed chemical, structural and morphological analysis of the involved materials and interfaces, the mechanism of switching in Nb/NbOx/Au resistive switching cells is discussed by investigating the role of metal-metal oxide interfaces in regulating electronic and ionic transport mechanisms. The resistive switching was found to be related to the formation/rupture of conductive nanofilaments in the NbOx layer under the action of an applied electric field, facilitated by the presence of an oxygen scavenger layer at the Nb/NbOx interface. Electrical characterization including device-to-device variability revealed an endurance >103 full-sweep cycles, retention >104 s, and multilevel capabilities. Furthermore, the observation of quantized conductance supports the physical mechanism of switching based on the formation of atomic-scale conductive filaments. Besides providing new insights into the switching properties of NbOx, this work also highlights the perspective of anodic oxidation as a promising method for the realization of resistive switching cells.

5.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500732

RESUMO

Superconducting nanofilms are tunable systems that can host a 3D-2D dimensional crossover leading to the Berezinskii-Kosterlitz-Thouless (BKT) superconducting transition approaching the 2D regime. Reducing the dimensionality further, from 2D to quasi-1D superconducting nanostructures with disorder, can generate quantum and thermal phase slips (PS) of the order parameter. Both BKT and PS are complex phase-fluctuation phenomena of difficult experiments. We characterized superconducting NbN nanofilms thinner than 15 nm, on different substrates, by temperature-dependent resistivity and current-voltage (I-V) characteristics. Our measurements evidence clear features related to the emergence of BKT transition and PS events. The contemporary observation in the same system of BKT transition and PS events, and their tunable evolution in temperature and thickness was explained as due to the nano-conducting paths forming in a granular NbN system. In one of the investigated samples, we were able to trace and characterize the continuous evolution in temperature from quantum to thermal PS. Our analysis established that the detected complex phase phenomena are strongly related to the interplay between the typical size of the nano-conductive paths and the superconducting coherence length.

6.
ACS Appl Mater Interfaces ; 14(47): 53027-53037, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36396122

RESUMO

Memristive devices relying on redox-based resistive switching mechanisms represent promising candidates for the development of novel computing paradigms beyond von Neumann architecture. Recent advancements in understanding physicochemical phenomena underlying resistive switching have shed new light on the importance of an appropriate selection of material properties required to optimize the performance of devices. However, despite great attention has been devoted to unveiling the role of doping concentration, impurity type, adsorbed moisture, and catalytic activity at the interfaces, specific studies concerning the effect of the counter electrode in regulating the electronic flow in memristive cells are scarce. In this work, the influence of the metal-insulator Schottky interfaces in electrochemical metallization memory (ECM) memristive cell model systems based on single-crystalline ZnO nanowires (NWs) is investigated following a combined experimental and modeling approach. By comparing and simulating the electrical characteristics of single NW devices with different contact configurations and by considering Ag and Pt electrodes as representative of electrochemically active and inert electrodes, respectively, we highlight the importance of an appropriate choice of electrode materials by taking into account the Schottky barrier height and interface chemistry at the metal-insulator interfaces. In particular, we show that a clever choice of metal-insulator interfaces allows to reshape the hysteretic conduction characteristics of the device and to increase the device performance by tuning its resistance window. These results obtained from single NW-based devices provide new insights into the selection criteria for materials and interfaces in connection with the design of advanced ECM cells.

7.
Soft Matter ; 16(18): 4383-4388, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32239055

RESUMO

The azobenzene chromophore is used as a functional dye for the development of smart microfluidic devices. A single layer microfluidic channel is produced, exploiting the potential of a dye doped PDMS formulation. The key advantage of this approach is the possibility to control the fluid flow by means of a simple light stimulus. Furthermore, the deformation can be controlled in time, space and intensity, giving rise to several degrees of freedom in the actuation of the channel squeezing. A future perspective will be the implementation of the microfluidic platform with structured light, to have the possibility to control the flow in a parallel and reversible manner at several points, modifying the pattern in real time.

8.
Nanomaterials (Basel) ; 10(2)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32045986

RESUMO

In this work, we performed a systematic study on the effect of the geometry of pre-patterned templates and spin-coating conditions on the self-assembling process of colloidal nanospheres. To achieve this goal, large-scale templates, with different size and shape, were generated by direct laser-writer lithography over square millimetre areas. When deposited over patterned templates, the ordering dynamics of the self-assembled nanospheres exhibits an inverse trend with respect to that observed for the maximisation of the correlation length ξ on a flat surface. Furthermore, the self-assembly process was found to be strongly dependent on the height (H) of the template sidewalls. In particular, we observed that, when H is 0.6 times the nanospheres diameter and spinning speed 2500 rpm, the formation of a confined and well ordered monolayer is promoted. To unveil the defects generation inside the templates, a systematic assessment of the directed self-assembly quality was performed by a novel method based on Delaunay triangulation. As a result of this study, we found that, in the best deposition conditions, the self-assembly process leads to well-ordered monolayer that extended for tens of micrometres within the linear templates, where 96.2% of them is aligned with the template sidewalls.

9.
Sci Rep ; 8(1): 4710, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549273

RESUMO

Superconducting and normal state properties of Niobium nanofilms have been systematically investigated as a function of film thickness, on different substrates. The width of the superconducting-to-normal transition for all films is remarkably narrow, confirming their high quality. The superconducting critical current density exhibits a pronounced maximum for thickness around 25 nm, marking the 3D-to-2D crossover. The magnetic penetration depth shows a sizeable enhancement for the thinnest films. Additional amplification effects of the superconducting properties have been obtained with sapphire substrates or squeezing the lateral size of the nanofilms. For thickness close to 20 nm we measured a doubled perpendicular critical magnetic field compared to its large thickness value, indicating shortening of the correlation length and the formation of small Cooper pairs. Our data analysis indicates an exciting interplay between quantum-size and proximity effects together with strong-coupling effects and the importance of disorder in the thinnest films, placing these nanofilms close to the BCS-BEC crossover regime.

10.
Sci Rep ; 7(1): 9066, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831111

RESUMO

X-ray nanofabrication has so far been usually limited to mask methods involving photoresist impression and subsequent etching. Herein we show that an innovative maskless X-ray nanopatterning approach allows writing electrical devices with nanometer feature size. In particular we fabricated a Josephson device on a Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide micro-crystal by drawing two single lines of only 50 nm in width using a 17.4 keV synchrotron nano-beam. A precise control of the fabrication process was achieved by monitoring in situ the variations of the device electrical resistance during X-ray irradiation, thus finely tuning the irradiation time to drive the material into a non-superconducting state only in the irradiated regions, without significantly perturbing the crystal structure. Time-dependent finite element model simulations show that a possible microscopic origin of this effect can be related to the instantaneous temperature increase induced by the intense synchrotron picosecond X-ray pulses. These results prove that a conceptually new patterning method for oxide electrical devices, based on the local change of electrical properties, is actually possible with potential advantages in terms of heat dissipation, chemical contamination, miniaturization and high aspect ratio of the devices.

11.
ACS Appl Mater Interfaces ; 9(18): 15685-15697, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28397488

RESUMO

The self-assembly (SA) of diblock copolymers (DBCs) based on phase separation into different morphologies of small and high-density features is widely investigated as a patterning and nanofabrication technique. The integration of conventional top-down approaches with the bottom-up SA of DBCs enables the possibility to address the gap in nanostructured lateral length standards for nanometrology, consequently supporting miniaturization processes in device fabrication. On this topic, we studied the pattern characteristic dimensions (i.e., center-to-center distance L0 and diameter D) of a cylinder-forming polystyrene-b-poly( methyl methacrylate) PS-b-PMMA (54 kg mol-1, styrene fraction 70%) DBC when confined within periodic SiO2 trenches of different widths (W, ranging between 75 and 600 nm) and fixed length (l, 5.7 µm). The characteristic dimensions of the PMMA cylinder structure in the confined configurations were compared with those obtained on a flat surface (L0 = 27.8 ± 0.5 nm, D = 13.0 ± 1.0 nm). The analysis of D as a function of W evolution indicates that the eccentricity of the PMMA cylinders decreases as a result of the deformation of the cylinder in the direction perpendicular to the trenches. The center-to-center distance in the direction parallel to the long side of the trenches (L0l) is equal to L0 measured on the flat surface, whereas the one along the short side (L0w) is subjected to an appreciable variation (ΔL0w = 5 nm) depending on W. The possibility of finely tuning L0w maintaining constant L0l paves the way to the realization of a DBC-based transfer standard for lateral length calibration with periods in the critical range between 20 and 50 nm wherein no commercial transfer standards are available. A prototype transfer standard with cylindrical holes was used to calibrate the linear correction factor c(Δx')xx' of an atomic force microscope for a scan length of Δx' = 1 µm. The relative standard uncertainty of the correction factor was only 1.3%, and the second-order nonlinear correction was found to be significant.

12.
Nanoscale Res Lett ; 11(1): 436, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27686091

RESUMO

In this work, we report a method to process porous silicon to improve its chemical resistance to alkaline solution attacks based on the functionalization of the pore surface by the electrochemical reduction of 4-nitrobenzendiazonium salt. This method provides porous silicon with strong resistance to the etching solutions used in optical lithography and allows the fabrication of tailored metallic contacts on its surface. The samples were studied by chemical, electrochemical, and morphological methods. We demonstrate that the grafted samples show a resistance to harsh alkaline solution more than three orders of magnitude larger than that of pristine porous silicon, being mostly unmodified after about 40 min. The samples maintained open pores after the grafting, making them suitable for further treatments like filling by polymers. Optical lithography was performed on the functionalized samples, and electrochemical characterization results are shown.

13.
Nano Lett ; 16(3): 1669-74, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26814601

RESUMO

We describe the first use of a novel photoresist-free X-ray nanopatterning technique to fabricate an electronic device. We have produced a proof-of-concept device consisting of a few Josephson junctions by irradiating microcrystals of the Bi2Sr2CaCu2O8+δ (Bi-2212) superconducting oxide with a 17.6 keV synchrotron nanobeam. Fully functional devices have been obtained by locally turning the material into a nonsuperconducting state by means of hard X-ray exposure. Nano-XRD patterns reveal that the crystallinity is substantially preserved in the irradiated areas that there is no evidence of macroscopic crystal disruption. Indications are that O ions have been removed from the crystals, which could make this technique interesting also for other oxide materials. Direct-write X-ray nanopatterning represents a promising fabrication method exploiting material/material rather than vacuum/material interfaces, with the potential for nanometric resolution, improved mechanical stability, enhanced depth of patterning, and absence of chemical contamination with respect to traditional lithographic techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA